

25121

120 MINUTES

- A) R is reflexive but not symmetric
- B) R is symmetric but not transitive
- C) R is reflexive and transitive but not symmetric
- D) R is an equivalence relation
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^x + x^2$. Which of the following is true about f?
 - A) f is strictly increasing
 - B) *f is strictly decreasing*
 - C) f is both increasing and decreasing
 - D) f is neither increasing nor decreasing
- 3. If the diagonal of a square is the line joining the points (1, 3, 2) and (2, 1, 3), then area of the square is:
 - A) 3 square units
- B) 4 square units
- C) 2 square units
- D) 1 square unit
- 4. Maximum value of y in the equation $9x^2 + 4y^2 72 = 0$ is:
 - A) Zero
- B) Infinity
- C) $2\sqrt{3}$
- D) $3\sqrt{2}$
- 5. Area enclosed by the curve $y^2 = 2 x^2$ between $x = -\sqrt{2}$ and $x = \sqrt{2}$ is equal to:
 - A) 2π
- B) $\sqrt{2}\pi$
- C) 3π
- D) $\sqrt{3}\pi$
- 6. A box contains 5 red balls and 3 blue balls. If two balls are drawn randomly without replacement, what is the probability that both balls are red?
 - A) $\frac{5}{8}$
- B) $\frac{5}{14}$
- C) $\frac{3}{8}$
- D) $\frac{25}{56}$

	A)	f must be continuous										
	B)	f must be o	f must be differentiable									
	C)	f can be w	f can be written as the difference of two monotone increasing functions									
	D)	None of the	ese									
0	-		0 11							0 11 1		
9.	Let A	be the set of all sequences whose elements are the digits 0 and 1, then the is:										
	A)	Finite		В)	Cou	ntable					
	C)	Uncountab	le	D			e of these					
10.	If S	$n = n^2$, then	the se	eauence {	S_n } is	s:						
	A)	bounded ar		•	-11)							
	B)			_								
	C)			_								
	D)	unbounded		_								
1.1	Т	1	1 ,	. 1:								
11.		lor series of	L									
	A)	1 + (z - 1)	(z) + (z)	$(x-1)^2 +$	(z -	$1)^{3}$	+ …					
	B)	1 - (z - 1)	(z)	$(x-1)^2$	(z -	$1)^{3}$	 ····					
	C)	1 - (z - 1)	$(z-1) + (z-1)^2 - (z-1)^3 + \cdots$									
	D)	1 - (z + 1)	.) + (z	$(x+1)^2$	(z +	1) ³	+ …					
12.	Up t	o isomorphis	sm, the	number o	of abo	elian	groups of	f ord	er 108	3 is:		
	A)	12	B)	9		C)	6		D)	5		
13.	The	number of go	enerato	ors of the	cycli	c gro	up of orde	er 8 i	is:			
	A)	1	B)	2	•	C)	3		D)	4		

If $A = \{x : x > 0 \text{ and } x^2 > 2\}$, then which of the following is true?

B)

D)

If a function $f:[a,b] \to \mathbb{R}$ is of bounded variation, then which of the following

infimum of A is $\sqrt{2}$

infimum of A is zero

A is an empty set

statement is correct?

supremum of A is $\sqrt{2}$

7.

8.

A)

C)

	A)	I and n	1		D) R)		vely prime	to n		
	C)	not relative	ıy priii	ne to n	D)	none	of these			
15.	Wh	ich among th	e follo	wing is	a wro	ng sta	atement?			
	A)	Every field is an integral domain								
	B)	For any pos	sitive i	nteger <i>p</i>	, \mathbb{Z}_p is	a fiel	d			
	C)	Every finite	integi	ral doma	in is	a field				
	D)	None of the	ese							
16.	The	characteristi	c of th	e ring Z	$_3$ × \mathbb{Z}_4	is:				
	A)	3	B)	4		C)	7	D)	12	
17.	Wh	ich among th	e follo	wing is	a gcd	of 22	, 471 and 3,	266?		
	A)	17	B)	23		C)	31	D)	29	
18.	$\operatorname{If} A$	is a square n	natrix	such tha	$t A^2 =$	= <i>A</i> , tl	nen $(I - A)$	$^{3} + A \text{ is}$	equal to:	
	A)	zero matrix								
				/ 3	-1	2\				
19.	Rar	nk of the matr	$\operatorname{rix} A =$	$=\begin{pmatrix} -6 \\ -3 \end{pmatrix}$	2 1	$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$				
	A)	0	B)	1	_	C)	2	D)	3	
20.	If V	V_1 and V_2 are 3	3-dime	ensional	subsp	oaces (of a 4-dime	nsional	space V, then the	
		illest possible			_				,	
	A)	1	B)	2		C)	3	D)	4	
21.	Let	T_1 and T_2 be	two n	naps fro	$m \mathbb{R}^2$	into I	\mathbb{R}^2 defined \mathfrak{k}	by T_1 (a.	(a,b) = (1+a,b) and	
	T_2 ((a,b) = (b,a).	Then w	which of	the fo	ollowi	ng is correc	et?		
	A)	T_1 is not a 1	inear t	ransforn	natior	and 7	T_2 is a linear	ar transf	ormation	
	B)	T_1 is a linear	ır trans	sformation	on an	dT_2 i	s not a line	ar transf	ormation	
	C)	T_1 is a linear	ır trans	sformation	on an	dT_2 i	s also a line	ear trans	formation	
	D)	T_1 is not a l	inear t	ransforn	natior	and 7	T_2 is also no	ot a linea	ar transformation	

In the ring \mathbb{Z}_n , the divisors of zero are precisely those elements that are:

14.

- 22. If ϕ is the Euler's totient function, then ϕ (ϕ (1001)) is equal to:
 - A) 144
- B) 192
- C) 298
- D) 96
- If $y = Ae^{2x} + Be^{-x}$, the differential equation satisfied by y is: 23.
 - A) $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = 0$ B) $\frac{d^2y}{dx^2} \frac{dy}{dx} y = 0$
- - C) $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = 0$ D) $\frac{d^2y}{dx^2} \frac{dy}{dx} + 2y = 0$
- General solution of the differential equation $\frac{dy}{dx} = \frac{2x}{v}$ is: 24.

 - A) $y^2 = x^2 + C$ B) $y^2 = 2x^2 + C$
 - C) $y^2 = 4x^2 + C$ D) $y^2 = x^2 C$
- The one dimensional wave equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial v^2}$ is: 25.
 - A) parabolic
- B) elliptic
- C) hyperbolic D)
 - none of these
- 26. Which of the following statements about compact sets is **false**?
 - A) Every compact set in a Hausdorff space is closed
 - B) A compact subset of a topological space is bounded
 - Every compact set in a metric space is sequentially compact C)
 - A continuous image of a compact set is compact D)
- 27. Let (X, d) be a metric space. Which of the following statements is **false**?
 - Every convergent sequence in *X* is a Cauchy sequence A)
 - B) A subset of X is compact if and only if it is closed and bounded
 - If (X, d) is complete, then every Cauchy sequence in X converges C)
 - Every bounded sequence in X has a convergent subsequence D)
- 28. Which of the following topological spaces is **not** a Hausdorff space?
 - The Euclidean space \mathbb{R}^n with the standard topology A)
 - B) The discrete topology on any set
 - The metric space (X, d), where d is a metric C)
 - None of these D)

	A)	$\sin^2\theta = \frac{96}{98}$	3 B)	$sin^2\theta =$	0 C)	$sin^2\theta$ =	$=\frac{25}{988}$ D)	$sin^2\theta = 1$	
30.		ch of the follach space?	lowing	is a neces	ssary co	ndition f	or a norme	ed space to be	e a
	A)	Every boun	ded se	quence has	s a conve	ergent sub	sequence		
	B)	The space i	s finite	e-dimension	nal				
	C)	The space i	s sepai	rable					
	D)	Every Cauc	-		verges				
31.		sed in $X \times Y$		_				e graph of <i>F</i> the following	
	A)	F is a conti	nuous	map from .	X into Y				
	B)	F is a non c	ontinu	ous map fr	omX int	to Y			
	C)	F is a linear	r homo	morphism	from X	onto Y			
	D)	F is a linear	r homo	omorphism	from X	into Y			
32.		$1 \le p < \infty $ $x = (1,0,0)$						If $x, y \in l^p$ sus equal to:	ıch
	A)	1	B)	2	C)	2^p	D)	$2^{\frac{1}{p}}$	
33.		is an orthonovalue of $\ u \ $			n inner p	oroduct sp	pace X , then	$n \text{ for } u \neq v$	∈ E
	A)	2	B)	$\sqrt{2}$	C)	2^p	D)	$2^{\frac{1}{p}}$	
34.	The	e domain of th	ne func	etion $f(x)$	$= \sqrt{16} -$	$-x^2$ is:			

If θ is the angle between the vectors (2,3,5) and (1, -4,3) in the real inner

product space \mathcal{R}^3 over \mathcal{R} , then which of the following is correct?

29.

A) $[0,\infty)$ B) (-4,4) C) [-4,4] D) $[4,\infty)$

35. 36.	 A) f is both one-one and onto B) f is one-one but not onto C) f is onto but not one-one D) f is neither one-one nor onto 								
50.		B(x,y). Th			31500101	of the fine s	egimen	it johin	11(0,0)
	A)	(-3,5)	B)	(3, -5)	C)	(-3, -5)	D)	(5,3))
37.	then	the length	of AB is	s:		$x^2 + y^2 = 4$			s A and B
	A)	2	B)	4	C)	$2\sqrt{2}$	D)	8	
38.	lim,	$x \to 0 \frac{\sqrt{x+2} - \sqrt{2}}{x}$	is:						
	A)	$\sqrt{2}$	B)	2	C)	$\frac{1}{\sqrt{2}}$	D)	$\frac{1}{2\sqrt{2}}$	
39.	_		of a so	that the fur	f	$(x) = x^2 + a$	ax + 5	is inci	reasing on
	_] is: -2	B)	0	C)	2	D)	4	
40.	twic					5 are equally the probabil	-		
	A)	$\frac{1}{2}$	B)	$\frac{1}{3}$	C)	1 7		D)	$\frac{4}{7}$
41.		ow many woo two red ch	-			hairs be kept	aroun	d a circ	cular table
	A)	2880	B)	1440	C)	720		D)	240
42.	A)	ich of the fo $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{2.$	+	B)	$\frac{1}{2} + \frac{1}{3}$	rgent? $\frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \frac{1}{4^{2/3}} + \frac{1}{9^{2/3}} + $		·	

Which of the following sequence of functions converges uniformly on the 43. given domain?

A) $f_n(x) = \frac{x}{n}, x \in \mathbb{R}$ B) $f_n(x) = x^n, x \in \mathbb{R}$ C) $f_n(x) = x^{\frac{1}{n}}, x > 0$ D) $f_n(x) = \frac{\sin nx}{n}, x \in \mathbb{R}$

The value of $\int_0^2 |2x - 1| dx$ is: 44.

A) 1

B)

C) $\frac{3}{2}$ D) $\frac{5}{2}$

The loci of the points z satisfying the equation |z - 1| + |z + 1| = 4 is: 45.

A circle centered at (1, -1) and radius 2

- A straight line passing through (1,-1) and at a perpendicular distance B) of 4 from the origin
- An ellipse with major axis 4 and minor axis $2\sqrt{3}$ C)
- D) A circle with (-1,0) and (1,0) as diameter
- Which of the following is a single valued function of z46.

A) $w = z^2$ B) $w = \sqrt{z}$ C) $w = e^z$ D) w = arg z

47. Which of the following is **not** true?

A) If f(z) is analytic then $\frac{df}{d\bar{z}} = 0$ at z

 $f(z) = |z|^2$ is analytic everywhere B)

- If f(z) = u + iv is analytic then the curves u = a constant and v = a constant form an orthogonal system
- If f(x) = u + iv is analytic then u and v are both harmonic functions D)
- The function $f(z) = \sin\left(\frac{1}{1-z}\right)$ has: 48.

A) a simple pole at z = 1

a removable singularity at z = 1B)

C) a non isolated essential singularity at z = 1

an isolated essential singularity at z = 1D)

49.	The	radius of co	nverge	nce of the po	wer se	ries $\sum_{n=1}^{\infty} \frac{n!}{n^n}$	z^n is:	
	A)	0	B)	e	C)	$\frac{1}{e}$	D)	∞
50.	The	remainder w	hen 3 ²	²⁵⁶ is divided	l by 14	· is:		
	A)			7	C)	9	D)	11
51.	The	number of h	omom	orphism fron	n ℤ ₈ to	\mathbb{Z}_{12} is:		
	A)	1	B)	2	C)	4	D)	8
52.	of th A) B)	he following	is not homon	true? norphism wit ime			mapp	ing. Then which
53.	Wh	ich of the fol	lowing	; is not true a	bout th	ne polynomia	1 f(x)	$=2x^2+4?$
	A)	f(x) is redu	ucible	over Z				
	B)	f(x) is irre	ducible	e over Q				
	C)	f(x) is redu	ucible	over R				
	D)	f(x) is redu	ucible	over C				
54.	The	number of h	omom	orphism fron	n the g	roup \mathbb{Z}_6 to \mathbb{Z}_6	₅xℤ₄ is	:
	A)	4	B)	6	C)	8	D)	12
55.	The	dimension o	f the fi	teld $\mathbb{Q}(\sqrt{2},\sqrt[3]{2})$	$\overline{2}$) ove	er the field Q	$(\sqrt{2})$ is	s:
	A)	2	B)	3	C)	4	D)	6
56.	The	splitting fiel	d of th	e polvnomial	$1 x^4 +$	1 over the fie	eld () is	s:
20.	A)	_				$\mathbb{Q}(i)$		
57.		$x = \gcd of the point $						$(x^2 - x + 1) = x^3 + 1$ is:

58.	Let G be a nor subgroups is:	ı-abelian grou	up of order 21. Then	the number of	sylow-3
	A) 1	B) 3	C) 7	D) 21	
59.	If the nullity of	the matrix $\begin{pmatrix} k \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ -1 & -2 \\ 1 & 4 \end{pmatrix}$ is 1, then the	value of k is:	
	A) -1	B) 0	C) 1	D) 2	

60.	The rank of th	e matrix	$\begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$	2 -2 2 2	0 1 -3 -2	2 1 -7 -4	is:		
	A) 1	B)	2			C)	3	D)4

Which of the following matrices cannot be obtained by elementary operation on the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$?

A)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 B) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \end{pmatrix}$ C) $\begin{pmatrix} 3 & 0 & 1 \\ 2 & 2 & 2 \\ 1 & 3 & 1 \end{pmatrix}$ D) $\begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 2 \\ 3 & 1 & 3 \end{pmatrix}$

62. Let $A = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$ be a matrix with integer entries such that $q \neq 0$. If $A^2 + A + I_2 = 0$, then:

A)
$$p^2 - p - qr = 1$$
 B) $p^2 - p - qs = 1$
C) $p^2 + p + qr = -1$ D) $p^2 + p - qr = -1$

63. Let $\{u, v\}$ be linearly independent subset of a real vector space V. Then which of the following is **not** linearly independent?

A)
$$\{u, u - v\}$$
 B) $\{u + \sqrt{2}v, u - \sqrt{2}v\}$
C) $\{v, 2v - \frac{u}{2}\}$ D) $\{2u + v, -4u - 2v\}$

64. The dimension of the subspace $W = \{(x, y, z) \in \mathbb{R}^3 | 2x + 2y + z = 0, 3x + 3y - 2z = 0, x + y - 3z = 0\}$ of \mathbb{R}^3 is:

A) 0 B) 1 C) 2 D) 3

	B)	S is linearly independent and spans V								
	C)	S is linearly dependent and does not span V								
	D)	S is linearly dependent and spans V								
66.	Wh	nich of the following is a linear transformation	ch of the following is a linear transformation?							
	A)	$T: \mathbb{R}^2 \to \mathbb{R}^3$ given by $T(x, y) = (x, y, xy)$								
	B)	$T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = (2x + y, x)$								
	C)	$T: \mathbb{R} \to \mathbb{R}$ given by $T_a(x) = x + a$ for son	$T: \mathbb{R} \to \mathbb{R}$ given by $T_a(x) = x + a$ for some non zero $a \in \mathbb{R}$							
	D)	$T: \mathbb{R} \to \mathbb{R}$ given by $T(x) = x^2$								
67.		$P(\mathbb{R})$ denote the vectorspace of all polynomials over real field \mathbb{R} . Then linear transformations $T: P(\mathbb{R}) \to P(\mathbb{R})$ given by $f(x) \to f'(x)$ is: Both one-one and onto B) One-one but not onto Not one-one but onto D) Neither one-one nor onto								
68.	Ifλ	l is an eigenvalue of a matrix A then the eige	nvalue of adj A is:							
	A)	λ B) $\frac{1}{\lambda}$ C) $ A $	$D) \frac{ A }{\lambda}$							
69.	The	e last digit of the number 2023 ^{2024²⁰²⁵ is:}								
	A)	1 B) 2 C) 3	D) 4							
70.	If p	is a prime number then by Fermat's Theore	m:							
	A)	$2^{p-1} - 2$ is divisible by p								
	B)	$2^p - 1$ is divisible by p								
	C)	$2^p - 2$ is divisible by p								
	D)	$2^{p-1} - 1$ is divisible by p								
71.	The	e differential equation of all circles of radius	r whose centres lie on the							
		10								

Let V be the vectorspace of all polynomials of degree less than or equal to 2.

Let $S = \{ x^2 + x + 1, x^2 + 2x + 2, x^2 + 3 \}$. Then:

S is linearly independent and does not span V

65.

x-axis:

$$A) \quad y \left(1 + \frac{dy}{dx} \right)^2 = r^2$$

A)
$$y\left(1+\frac{dy}{dx}\right)^2=r^2$$
 B) $y^2\left(1+\left(\frac{dy}{dx}\right)^2\right)=r^2$

C)
$$y^2 \left(1 + \frac{dy}{dx} \right) = r^2$$

C)
$$y^2 \left(1 + \frac{dy}{dx}\right) = r^2$$
 D) $y^2 \left(1 + \frac{dy}{dx}\right)^2 = r^2$

The solution of the differential equation (x + y)(dx - dy) = dx + dy is: 72.

A)
$$x^2 + y^2 = c$$

B)
$$e^{x+y} = c(x-y)$$

C)
$$x + y = ce^{x-y}$$

$$D) \qquad e^{x+y} = e^{x-y} + c$$

The orthogonal trajectory of the family of parabolas $y = ax^2$ is: 73.

$$A) \quad x^2 + y^2 = c$$

$$B) 2x^2 + y^2 = c$$

C)
$$x^2 - y^2 = c$$

D)
$$x^2 + 2y^2 = c$$

The value of the Bessel function $J_{\frac{1}{2}}(x)$ is: 74.

A)
$$\sqrt{2\pi} \sin x$$
 B) $\sqrt{\frac{2}{\pi}} \sin x$

A)
$$\sqrt{2\pi} \sin x$$
 B) $\sqrt{\frac{2}{\pi}} \sin x$ C) $\sqrt{\frac{2}{\pi x}} \sin x$ D) $\sqrt{\frac{\pi}{2x}} \sin x$

The solution of the partial differential equation $\frac{\partial^2 z}{\partial x^2} + z = 0$ given when 75. $x = 0, z = e^y$ and $\frac{\partial z}{\partial x} = 1$

A)
$$z = e^y \cos x + \sin x$$

A)
$$z = e^y \cos x + \sin x$$
 B) $z = e^y \sin x + \cos x$

C)
$$z = e^y (\sin x + \cos x)$$
 D) $z = e^y (\sin x - \cos x)$

$$z = e^y \left(\sin x - \cos x \right)$$

- Let (X, d) be a metric space and $A(\neq \emptyset)$ be a subset of X. Consider the 76. following statements:
 - Every convergent sequence in A is a Cauchy sequence in A (I)
 - Every Cauchy sequence in A is a convergent sequence in A Then which of the following is correct?
 - A) (I) is True but (II) is False
 - B) (I) is False but (II) is True
 - Both (I) and (II) are True C)
 - Both (I) and (II) are False D)
- 77. Which of the following is **not** true about compact sets:

- A) \mathbb{R} with usual metric is not compact
- Infinite discrete metric space is compact B)
- C) Continuous image of a compact set is compact
- Let \mathbb{R} be with usual metric then $A = [0,1] \subseteq \mathbb{R}$ is compact D)
- Let τ be the smallest topology on the set \mathbb{R} containing : 78.

$$\beta = \{ [a, b) | a < b, a, b \in \mathbb{R} \}$$

- (I) \mathbb{R} is compact in the topology τ
- τ is Hausdorff (II)

Which of the following is correct?

- A) Both (I) and (II) are True
- (I) is True but (II) is False B)
- (II) is True but (I) is False C)
- Both (I) and (II) are False D)
- Dual space of l^p (p > 1) is: 79.
 - A) l^{∞}

- B) l^q where q = 1 p
- l^q where $\frac{1}{n} + \frac{1}{a} = 1$ D) l^q where $\frac{1}{n} \frac{1}{a} = 1$
- If W is a subspace of an inner product space V and W^{\perp} is orthogonal 80. complement of W. Then which of the following is **not** true?
 - W^{\perp} is a subspace of V B) $(W^{\perp})^{\perp} = W$ A)
 - $W \cap W^{\perp} \neq \{0\}$ C)
- D) $V = W \oplus W^{\perp}$