

25124

120 MINUTES

1	Condition	for a	vector \vec{A}	to be	solenoide	a1•
1.	Condition	ioi a	VECTOI A	io be	Solchola	aı.

 $\vec{\nabla} \cdot \vec{A} = 0$ B) $\nabla \vec{A} = 0$ C) $\vec{\nabla} \cdot \vec{A} \neq 0$ D) $\nabla \times \vec{A} = 0$

A)

The period of the function $3Cos\left[\frac{\pi}{4}(t-1)\right]$: 2.

> A) 4 s

B) 8 s C) $\frac{1}{4}$ s

2 s D)

3. The mean and standard deviation are 20 and 4 respectively. Get the binomial expression:

A) $\left(\frac{1}{5} + \frac{4}{5}\right)^{25}$ B) $\left(\frac{4}{5} + \frac{1}{5}\right)^{25}$ C) $\left(\frac{1}{5} + \frac{4}{5}\right)^{100}$ D)

None of these

4. Which of the following is **not** true about motion in a central force field?

Has spherical symmetry if force is along the distance from the fixed centre A)

B) Angle co-ordinate is cyclic

Orbital plane is parallel to the fixed direction of angular momentum C)

Angular momentum is conserved. D)

A particle of mass m moves in a one dimensional potential $V(x) = kx^2$; (k > 0). 5. At time t=0, the particle starts from rest at x=A. If A is the amplitude, then the time period for bounded motion is:

A) Independent of A

Proportional to $\frac{1}{\sqrt{\Lambda}}$ B)

Proportional to $\frac{1}{\Lambda}$ C)

None of these D)

6. Zero point energy is a consequence of:

A) Degeneracy B) Harmonics

Uncertainty principle C)

None of these D)

7. The transition rate between eigen states is described by:

> Hartree-Fock equation A)

Fermi's golden rule B)

Optical theorem C)

Connection formulas D)

8. If the energy of a particle is reduced to half, then the percentage increase in the de-Broglie wavelength is:

A) 100%

41 % B)

C) >100%

None of these D)

9.		position ope							
	A)	$-\mathrm{i}\hbar\overrightarrow{ abla}$	B)	$i\hbar \frac{\partial}{\partial t}$	C)	x	D)	$\mathrm{i}\hbar\frac{\partial}{\partial\mathrm{p}}$	
10.		ertion (A): son (R):	The pa	gen function writy of wave y level.			ates with e	ach increasing	
	A) B) C) D)		d R are out R is			_			
11.		$TdS = C_v a$	_		ves the	<i>TdS</i> equat	tion?		
		$TdS = C_v a$		- · V					
		$TdS = C_p a$							
	D)	$TdS = C_p a$	dT + T($\left(\frac{\partial P}{\partial T}\right)_V dV$					
12.	The	statistical di	stributio	on function	for a pr	oton gas i	is:		
	A)	$e^{-\frac{\epsilon}{kT}}$	B)	$\frac{1}{e^{\beta(\epsilon_i-\mu)}-1}$	C)	$\frac{1}{e^{\left(\frac{\epsilon}{kT}\right)}+1}$	D)	$\frac{1}{e^{\beta(\epsilon_{\dot{l}}-\mu)}+1}$	
13.	Cand A) B) C) D)	An isolate	om of th nd shap d syster	e system e of the syst		n			
14.	Whie A) C)	ch statistics Maxwell-I Bose-Eins	Boltzma		Fern	s? ni-Dirac of these			
15.		ngth 'l' mov Blv ; Farac -B/lv ; Bic	ring at a days' la ot Savar apere's	speed 'v' p w	erpendi			n.f. in a conduct field 'B'.	or

16.		rajectory of a \vec{B}) will be:	a charg	ed part	icle m	oving	in a crossed	d electro	omagnetic field
		Circular	B)	Cyclo	oidal	C)	Linear	D)	Will not move
17.		nagnetic field			e 'r' fr	om a lo	ong straight	wire ca	arrying steady
	A)	$\frac{i}{r^2}$	B)	$\frac{i^2}{r}$		C)	$\frac{i}{r}$	D)	None of these
18.	Mono A) C)	ochromatic n Spectral co Polarization	herence	e	B)	Spatia	al coherenc		
19.	consi	ch of the follo				ar as re	ectangular v	wavegui	des are
	A) B) C) D)	TE ₁₀ has the	e highe ld is pe	st cut-	off wa	_	•	propaga	ntion
20.		y the Lorent als respectiv							
	A)	$\vec{\nabla} \times \vec{A} = -$	$c^2 \frac{\partial \emptyset}{\partial t}$		B)	$\overrightarrow{\nabla}.\overrightarrow{A}$	$= -c^{-2} \frac{\partial \emptyset}{\partial t}$		
	C)	$\vec{\nabla}.\vec{A} = \frac{1}{c^2}\frac{\partial}{\partial}$	<u>Ø</u>		D)	$\vec{\nabla} \times \vec{\lambda}$	$\vec{A} = -c^{-2} \frac{\partial}{\partial c}$	<u>lø</u> θt	
21.	Whie A) C)	ch of the foll Acoustic re Anharmoni	sonator	r	B)	Phase	Morse ener e shift oscill e's atom		e?
22.	A vib A) C)	oration produ Infrared spe X-ray spect	ectra	nange i	n elect B) D)	Rama	oole momen an spectra of these	t of a m	olecule yields:
23.	Durii	ng an electron riences no sig Aufbau prin Overhauser	nic tran gnificar nciple	nt chan	the nu	iclear o is is: Frank		rinciple	e molecule
24.	The IA)	Lande g-facto 5/2	or for th B)	ne ³ P ₁ 1 7/2	evel o	f an at C)	om is: 3/2	D)	1/2

25.	The A)	shortest wav 0.01 Å								
26.	The	ground state	of Sod	ium (Z	Z=11) i	is:				
	A)	$^{3}P_{3/2}$	B)	$^{5}S_{3/2}$		C)	$^{2}S_{1/2}$	D)	$^{2}P_{1/2}$	
27.			ectrons roximat enheim essive a	in a maion	olecul roxima	e? ation	otion of th	e atomic	nuclei w	hile
28.	The A) C)	admissible p Finite squ Charge in	are well		B)	Infir	and proton nite square independe	well	eron is:	
29.	The A) C)	non-conserv Charge Strangene	-	ntity in	the re B) D)	Bary	$p \rightarrow e^+ + e^+$ yon number e of these	-		
30.	Fissi A) B) C) D)	Rich in pr Rich in pr Rich in ne Products of All of thes	otons outrons of radioa				e because t	hey are .	?	
31.	num A)	$1s_{1/2} \ 2p_{1/2}$	$2p_{3/2}$	$3d_{5/2}$	$3d_{3/2}$; 18	e nucleon f	filling and	d the nuc	leon
	B) C)	$1s_{1/2} 1p_{3/2}$ $1s_{1/2} 1p_{3/2}$	•	•	•					
	D)	$1s_{1/2} \ 2p_{3/2}$,	,	,					
32.		ation of mass cordance was Gell-Mann Heisenber Charge co Selection	ith: n–Nishi g's unc njugatio	jima fo	ormula	l	in meson 1	theory of	nuclear	force is

33.	Which among the following has a non-classical origin in the Weizsacker's semi empirical mass formula?										
		Coulomb term		Surface term							
		Asymmetry term	,								
	C)	risymmetry term	D)	v oranic term							
34.	Iden	tify the pair which represe	ents a n	nirror nuclei:							
	A)	$^{60}_{27}$ Co and $^{27}_{13}$ Al	B)	$^{60}_{27}$ Co and $^{60}_{69}$ Zn							
	C)	$^{60}_{27}$ Co and $^{27}_{13}$ Al	D)	$_{24}^{52}$ Cr and $_{28}^{52}$ Ni							
35.	atom A) B)	Pick up reaction Internal Conversion Compound nuclei form		m a high excited state nuclei to an inner							
36.	Whi	ch of the following is allo	wed?								
				$\pi^+ + \pi^- \rightarrow \gamma$							
				None of these							
37.		eaction:		all the nuclei in 1 kg of deuterium fuse by $2p + 2n + 43 MeV$							
	A)	$3.456 \times 10^{13} \text{J}$	B)	34.56×10^{12} J							
		$34.56 \times 10^{14} \text{J}$		34.56×10^{13} J							
38.		'yellowcake' is: Uranium B) Plut	onium	C) Iodoform D) Curcumin							
39.	Mato	ch the following:									
	List	I	List 1	II							
		lectromagnetic decay	1.								
		trong decay		$n \to p + e^- + \overline{\nu_e}$							
		egative β-decay		$\Delta^o \rightarrow \pi^o + n$							
	d. W	Veak decay	4.	$\pi^o \to e^- + e^+$							
	A)	a-3, b-4, c-1, d-2	B)	a-4, b-3, c-2, d-1							
	C)	a-1, b-2, c-3, d-4	D)								
	,	, , , , , , , , , , , , , , , , , , , ,	,								

40.	The	speed of a mo	oving r	elativis	stic par	rticle v	whose mass	s is 3 tim	es its rest mass is:
	A)	$\frac{8}{9}$ C	B)	$\frac{1}{3}$ C		C)	$\frac{2\sqrt{2}}{3}$ C	D)	3c
41.		tify the non-d Covalent				C)	Ionic	D)	Co-ordinate
42.	A)	to Frenkel de Decreases Increases	efect, th	e dens	B)	Decr	solids: eases and t not chang		ease
43.		Bragg angle felength of X-3.03 Å	ray is	1.75 Å	. Calcı	ılate tl	`	arameter	•
44.	Give	ulate the condithe below date the below date of the concern $\mu_n = 0.3$	ata. atratic	$n, n_i =$	= 2.4 >	× 10 ¹⁹		rier mol	
	A) C)	2.93 mho/n 2.22 mho/n			/		mho/m mho/m		
45.		lattice parame the interplan $\frac{a}{\sqrt{5}}$		ration		en the	•		2
46.	Wave A) C)	e vectors that Matter wav Lattice wav	e	thin the	e 1st B B) D)	Bloc	n zone in i h wave shock wav	_	l space describes:
47.	E(k)	Energy mome $ \frac{1}{2}(Ak^2 + \frac{1}{2}) $ tive mass of	$-Bk^4$),	where	e A a		_	-	lculate the
	A)	Ak_o^2			B)	$\left(\frac{Ak_{O}}{}\right)$	$\frac{+2Bk_0^3}{\hbar^2}$		
	C)	$\hbar^2(A+6B$	$3k_{o}^{2})$		D)	$\frac{\hbar}{(A+6)}$	$\frac{2}{Bk_0^2}$		

48.		metal obeyi i energy (E _F)	_			•	the re	lation connecting
	A) <i>R</i>	$_{H}=E_{F}^{3/2}$		B)	R_H	$=E_F^{-3/2}$		
	C) R	$_{H}=E_{F}^{2/3}$		D)	R_H	is independ	ent of	E_F
49.	poter a dia	ntial energy o	of interaule bec	action between omes a loca	een the	m in the fience of the mum (not at a	ld of ea	ach other in
	A)	$\left(\frac{2a}{b}\right)^{1/6}$	B)	$\left(\frac{9b}{a}\right)^{1/6}$	C)	$\left(\frac{2a}{b}\right)^{1/8}$	D)	$\left(\frac{9b}{a}\right)^{1/8}$
50.	frequ reson	ency of 4.4 lant frequence	MHz. If y will t	f the capacit be:	ance is	nsistor oscill increased by	y 21 %	, the new
	A)	9.6 MHZ	В)	4 MHZ	C)	3.6 MHZ	D)	None of these
51.	The lA)	owest level _J FORTRAN COBOL		B)	Asse	ed in a micro embly Langu essor States	age	ssor is:
52.		$y = -\frac{h}{\sqrt{\pi}}e$ The ground Gaussian for Derivatives functions	h^2x^2 is lastate varietion sof the	the mathem wave function Gaussian fu	natical on of a nction	quantum har	or a Ga monic esented	ussian distribution oscillator is a using Hermite ction of a normal
53.	Num A)	_	_	gures in 4.50 6 and 3			03 are 1 D)	respectively: 2 and 6
54.	PIN (A)	diode acts as 300 MHz		•	_	encies up to a		10 MHz
55.			nent sp			naximum sta	tic erro	specified within or. None of these

56.	Asser	tion (A	*	In successive approximation type ADC, conversion time remains the same.								
	Reaso	on (R):	C	Conver	sion t	ime is	indepe	nden	t of inpu	ıt volta	ige.	
	A) B) C) D)	Both A A is tr	A and	R are t R is f	rue, talse				explana rect exp			
57.	List I a. Cla b. Cl c. Cla	ass-A a	ımplifi bush-pı ampli	er ull am fier	plifie	r 2. (Radio w Conduct	ion a	ngle bet ngle = 3		l 80° an	ad 360°
		a-3, b-					a-4, t a-3, t					
58.	A) B)	It is an indirect band gap semiconductor Wider band gap										
59.	respe	_	If the	surfac	e are	a of A			e 400°K n that of			the ratio
60.		sotopic Mass Surfac	effect			B)	s are du Volu None	me e				
61.						_	ce lattic $\vec{c} = \hat{z}$.		the vol	ume of	unit c	ell.
	A)	$\frac{2}{\sqrt{3}}$		B)	$\frac{\sqrt{3}}{2}$		C)	2√	3	D)	$2\sqrt{2}$	
62.	Whic	h of the	e follo	wing n	natrix	is He	ermitian	?				
	A)	$\begin{bmatrix} i & 0 \\ 0 & - \end{bmatrix}$	$\begin{bmatrix} 0 \\ -i \end{bmatrix}$	B)	$\begin{bmatrix} i \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ i \end{bmatrix}$	C)	$\begin{bmatrix} 0 \\ i \end{bmatrix}$	$\begin{bmatrix} i \\ 0 \end{bmatrix}$	D)	$\big[{0\atop -i}$	$\begin{bmatrix} i \\ 0 \end{bmatrix}$

63.	A ve	ector 'r' is in	rotation	ıal if:			
	A)	$\nabla . \vec{r} = 0$	B)	$ abla imesec{r} eq 0$	C)	$\nabla \cdot \vec{r} \neq 0$	D)

 $\nabla \times \vec{r} = 0$

66. If every element in a row of a square matrix is zero, then:

A) $A^2 = I$ B) Determinant of A is

A)
$$A^2 = I$$
 B) Determinant of A is zero
C) $A^3 = -A$ D) $A = A^2$

67. If f = u + iv, u and v are real numbers then the Cauchy-Reimann equation in cartesian form is:

A)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
; $\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}$ B) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$; $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$
C) $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$; $\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}$ D) $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$; $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

68. The generating function of Legendre polynomial Pn(x) is:

A)
$$(1+2xz-z^2)^{1/2}$$
 B) $(1-2xz+z^2)^{-1/2}$

C)
$$(1-2xz-z^2)^{1/2}$$
 D) $(1-2xz-z^2)^{-1/2}$

69. If $\delta(x)$ is Dirac Delta function, then:

A)
$$\int_{-\infty}^{+\infty} \delta(x) dx = 0$$
 B)
$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$

C)
$$\int_{-\infty}^{+\infty} \delta(x) dx = \infty$$
 D) $\int_{-\infty}^{+\infty} \delta(x) dx = -1$

70. The Lagrangian function for simple pendulum is:

A)
$$L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl(1 - \cos\theta)$$

B)
$$L = \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 + \cos\theta)$$

C)
$$L = \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta)$$

D)
$$L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl(1 + \cos\theta)$$

71. The phase curve of simple harmonic oscillator is:

72.		moment of in angent is:	ertia o	f a solid sphe	ere, wi	th mass M ar	nd radi	us R, about
			B)	$(7/5) MR^2$	C)	$(9/5) MR^2$	D)	$(3/5) MR^2$
73.	A co	nstraint expre	essed in	n the form of	inequ	ality is o	constra	aint.
	A)	Holonomic		B)	Non	holonomic		
	C)	Rheonomou	us	D)	Scle	ronomous		
74.	- 10	and p_l are the cet is:	e posit	tion and mon	nentun	n coordinates	, their	Poisson
	A)	$[q_k p_l] = -$	∞	B)	$[q_k p$	$[q_l] = \infty$		
	C)	$[q_k p_l] = -$	1	D)	$[q_k p$	$[\delta_l] = \delta_{kl}$		
75.		s the angular velocity, the				, <i>m</i> is the mas	s and	$\frac{dA}{dt}$ is the
		• •	•			$\frac{dA}{dt} = \frac{J^2}{m}$	D)	$\frac{dA}{dt} = \frac{J}{m}$
76.	If F i	s the gauge f	unction	n, the gauge i	invaria	ance of Lagra	ngian	is:

Brachistochrone curve, curve of fastest descent, on which a bead slides 77. frictionlessly under the influence of a uniform gravitational field to a given end point in the shortest time, is:

B) $L' = L + \frac{dF}{dt}$

A) Catenoid

Cycloid B)

C) Straight line

A) $L' = L + \frac{d^2F}{dt^2}$

C) $L' = L - \frac{d^2F}{dt^2}$

D) Hyperbolic

D) $L' = L + \int F dt$

If h is Planck's constant, the uncertainty relation for energy and time is: 78.

A) $\Delta E \cdot \Delta t \geq h$

C) $\Delta E. \Delta t \geq \frac{h}{2\pi}$

B) $\Delta E. \Delta t = \frac{h}{4\pi}$ D) $\Delta E. \Delta t \ge \frac{h}{4\pi}$

If ψ is the wavefunction and ψ^* is its complex conjugate, the expression 79. for probability current density is:

A) $\mathbf{J} = \frac{i\hbar}{2m} (\nabla \boldsymbol{\psi}^* - \nabla \boldsymbol{\psi})$ B) $\mathbf{J} = \frac{i\hbar}{2m} (\boldsymbol{\psi}^* \nabla \boldsymbol{\psi} - \boldsymbol{\psi} \nabla \boldsymbol{\psi}^*)$

C) $\mathbf{J} = \frac{i\hbar}{2m} (\boldsymbol{\psi} \nabla \boldsymbol{\psi}^* - \boldsymbol{\psi}^* \nabla \boldsymbol{\psi}) \mathbf{D}$ $\mathbf{J} = \frac{i\hbar}{2m} (\boldsymbol{\psi} \nabla \boldsymbol{\psi}^* + \boldsymbol{\psi}^* \nabla \boldsymbol{\psi})$

80.	The	one dimen	sional m	omentum	operator i	n quantum	mechan	ics is:
	A)	$+\hbar \frac{\partial}{\partial x}$	B)	$-\hbar \frac{\partial}{\partial x}$	C)	$-i\hbar \frac{\partial}{\partial x}$	D)	$+i\hbar\frac{\partial}{\partial x}$

- $[L_v, L_z] = i\hbar L_z$
- B) $[L_v, L_z] = i\hbar L_x$
- $[L_{v}, L_{z}] = i\hbar L_{x}^{2}$ C)
- D) $[L_v, L_z] = i\hbar L_v$

 $i(i+1)\hbar^2$ A)

- B) $\sqrt{j(j+1)}\hbar^2$
- C) $\sqrt{j(j+1)}\hbar$
- D) $i(i+1)\hbar$

- Electron A)
- B) Proton
- C) Neutron
- D) Photon

A)
$$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \psi = \frac{m_0^2 C^2}{\hbar^2} \psi$$

B)
$$\left(\nabla^2 + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \psi = \frac{m_0^2 c^2}{\hbar^2} \psi$$

C)
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \psi = \frac{m_0^2 c^2}{\hbar} \psi$$

D)
$$\left(\nabla^2 + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \psi = \frac{m_0^2 c^2}{\hbar} \psi$$

85. The solution of rigid rotator problem in quantum mechanics lead to quantized energy levels with quantum number
$$l=0,1,2...$$
, is given by ($\hbar=(Planck's constant/2\pi)$; $I=moment$ of inertia):

A)
$$E_l = \frac{l\hbar^2}{2I}$$
 B) $E_l = \frac{l(l+1)}{2I\hbar^2}$ C) $E_l = \frac{l(l+1)\hbar^2}{2I}$ D) $E_l = \frac{l(l+1)\hbar}{2I}$

The validity of WKB approximation can be expressed as: 86.

A)
$$\frac{\lambda}{2\pi} \frac{1}{k} \left| \frac{dk}{dx} \right| \ll 1$$

B)
$$\frac{\lambda}{2\pi} \frac{1}{k} \left| \frac{dk}{dx} \right| \gg 1$$

C)
$$\frac{\lambda}{2\pi} \frac{1}{k} \left| \frac{dk}{dx} \right| = 1$$

D)
$$\frac{\lambda}{2\pi} \frac{1}{k} \left| \frac{dk}{dx} \right| = 0$$

- Which of the following is a valid property of Dirac matrices?
 A) The matrices commute each other
 B) The matrices anticommute in pairs
 C) The squares of matrices are not unity
 - D) None of the above is correct
- 88. If the lattice parameters of a crystal are a = b = c and $\alpha = \beta = \gamma \neq 90^{\circ} < 120^{\circ}$, then, the crystal system is:
 - A) HexagonalB) MonoclinicC) OrthorhombicD) Rhombohedral
- 89. For body centred cubic, atomic packing factor is:
 A) 0.52 B) 0.74 C) 0.68 D) 0.25
- 90. If **a**, **b** and **c** are the primitive lattice vectors in direct lattice, the corresponding reciprocal lattice vector **b***is:
 - A) $\boldsymbol{b}^* = 2\pi \frac{a \times c}{a.(b \times c)}$ B) $\boldsymbol{b}^* = 2\pi \frac{b \times a}{a.(b \times c)}$
 - C) $\boldsymbol{b}^* = 2\pi \frac{c \times a}{a.(b \times c)}$ D) $\boldsymbol{b}^* = 2\pi \frac{a \times b}{a.(b \times c)}$
- 91. If K is thermal conductivity and σ is electrical conductivity, according to Wiedmann Franz law:
 - A) $\frac{K}{\sigma^2} = constant$ B) $\frac{K}{\sigma T} = constant$
 - C) $\frac{K}{\sigma T} \neq constant$ D) $\frac{\sigma K}{T} = constant$
- 92. If *n* is the carrier concentration in metal and *e* is the electronic charge, the Hall coefficient is given by:
 - A) $R_H = \frac{-n}{e}$ B) $R_H = \frac{-1}{ne}$ C) $R_H = \frac{n}{e}$ D) $R_H = \frac{+1}{ne}$
- 93. If energy of free electron is E, k is wavevector and h is Planck's constant $(\hbar = h/2\pi)$, according to band theory, the effective mass of electron can be expressed as:
 - A) $m^* = \frac{\hbar^2}{d^2 E/dk^2}$ B) $m^* = \frac{\hbar^2}{dE/dk}$
 - C) $m^* = \frac{\hbar}{d^2 E/dk^2}$ D) $m^* = \frac{\hbar}{dE/dk}$

94.	The A)	magnetic pe μ_r =1+ χ	rmeabi B)	lity (μ_r) is re $\mu_r=1-\chi$	elated to C)	magnetic s μ _r =1/χ	susceptil D)	pility χ as: $\mu_r = \chi^2$
	with	is the critic	e for a s	superconduc		on of critica	al magn	etic field B_c
	4.	ח (תי) ו	- (a) [$_{1}$ $_{1}$ $_{1}$ $_{1}$				

A)
$$B_c(T) = B_c(0) \left(1 + \left(\frac{T}{T_c} \right) \right)$$

B)
$$B_c(T) = B_c(0) \left(1 + \left(\frac{T}{T_c}\right)^2\right)$$

C)
$$B_c(T) = B_c(0) \left(1 - \left(\frac{T}{T_c}\right)\right)$$

D)
$$B_c(T) = B_c(0) \left(1 - \left(\frac{T}{T_c}\right)^2\right)$$

96. Basic principle of laser is:

- A) Spontaneous emission B) Stimulated emission
- C) Induced absorption D) None of the above

97. If a^* , b^* and c^* are the primitive translation vectors in reciprocal lattice and b, k, l are integers, the reciprocal lattice vector is:

A)
$$G = ha^* + kb^* + lc^*$$
 B) $G = ha^* \cdot (kb^* + lc^*)$

C)
$$\mathbf{G} = h\mathbf{a}^* \cdot (k\mathbf{b}^* \times l\mathbf{c}^*)$$
 D) $\mathbf{G} = h\mathbf{a}^* \times k\mathbf{b}^* \times l\mathbf{c}^*$

98. If **K** is the incident wavevector and **G** is the reciprocal lattice vector, Bragg's law in reciprocal space:

A)
$$\mathbf{K} \cdot \mathbf{G} - G^2 = 0$$
 B) $2 \mathbf{K} \cdot \mathbf{G} - G^2 = 0$

C)
$$2 K \times G - G^2 = 0$$
 D) $2 K \cdot G + G^2 = 0$

99. Which of the following magnetic properties is temperature independent?

- A) Diamagnetism B) Paramagnetism
- C) Ferromagnetism D) All of these

100. Germanium is a:

- A) Metallic crystal B) Covalently bonded crystal
- C) Ionic crystal D) None of these

101. The relation between magnetic field and electric field is:

A)
$$\vec{B} = \frac{\vec{v} \times \vec{E}}{c}$$
 B) $\vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}$ C) $\vec{B} = \frac{\vec{v} \cdot \vec{E}}{c^2}$ D) $\vec{B} = -\frac{\vec{v} \times \vec{E}}{c^2}$

102.	102. Electric flux due to electric field <i>E</i> is given by:									
		$\int_{S} E.dS$		$\int E \times a$!S		$-\int E.dS$		$-\int E \times dS$	
	A)	s	B)	s		C)	s	D)	s	
103.	vector correrespective σ . The A)	tangential and (\vec{D}) in a dispersion of (\vec{D}) in a	electric ompone surface condition = σ	mediunts in free con for	um 1 a diele charge displa B)	are \vec{D}_{1t} ectric densite cemen \vec{D}_{1t}	and \overrightarrow{D}_{1n} medium \vec{D}_{2t} ty separation to vector is $-\overrightarrow{D}_{2t} = 0$	respective \overrightarrow{D}_{2} are \overrightarrow{D}_{2}	vely and the \vec{D}_{2n}	
104.	The Maxwell's equation which is independent of medium is:									
	A)	$\nabla \times H = J$	Οt							
	C)	$\nabla \times \mathbf{E} = -$	∂B ∂t		D)	∇. B =	= 0			
105.		magnetic vec (½) B .r	-				_			
106.	For molecular vibration to be Raman active, there should be a change in:									
	A)								O	
	C)	Molecular v								
107.	The UV Visible spectrum arises due to the transitions among:									
	A) Rotational energy levels									
	B) Electronic energy levels									
	C)	Vibrational	energy	levels	}					
	D)	None of the	above							
108.	Experiment which provided the evidence for electronic spin:									
	A) Stern Gerlach Experiment									
	B) Frank Hertz Experiment									
	C) Davisson and Germer Experiment									
	D)	Michelson 1	Morley	Exper	iment					

109. According to Fermi Dirac distribution law, the probability of electron

occupancy at Fermi level is:

110.	The r A)	adius of Al r 1 fermi	nucleus B)				Mass numbe 5.7 fermi	-	: 7.8 fermi	
111.	The rA)	Raman spe	ctrosco	ру	B)	UV V	nemical can lassible spect red spectroso	roscopy	rmined using:	
112.	The v A)	value of nucl 2.7 x 10 ⁻²⁷ .	ear maş JT ⁻¹	gneton		1.6 x	10 ⁻²⁷ JT ⁻¹			
	C)	5.4×10^{-27} .	JT^{-1}		D)	5.05x	10^{-27}JT^{-1}			
113.	For a A)	spherically a	symme B)	tric nu 0	cleus,	nuclea C)	r quadrupol -1	e mome D)	ent is:	
114.	numb	pairing term	s is a	ınd nüi	nber o	f neutr	ons is			
	A)	Even, even	В)	Even	, odd	C)	Odd, even	D)	Odd, odd	
115.	Whic A)	h of the follo	owing i B)	s not a	ı magio	c numb C)	per for nucle 20	i? D)	30	
116.	The tA)	,						ive		
117.	The diode having negative resistance characteristic:									
	A) C)	Schottky di Tunnel dio			,		diode arrier diode			
118.	 A phase shift oscillator has: A) One RC circuit B) One LC circuit C) Three RC circuits D) Three LC circuits 									
119.	In JF A) C)	ET, after pin Zero Suddenly in			ain cur B) D)	Cons				
120.	Which A) C)	h is the feed Resistor Voltage reg		ement	in an (B)	Op-An Diodo Capa	e	?		