

120 MINUTES

Assume that the coefficients of the quadratic equation $ax^2 + bx + c = 0$ are 1. uniformly distributed over the interval (0,1). Then the probability that the quadratic equation has real roots?

A)
$$\frac{2log2}{8}$$

B)
$$\frac{3+2log4}{5}$$
 C) $\frac{2+3lo}{5}$

C)
$$\frac{2+3lo}{5}$$

D) None of these

Consider a Markov chain with state space {1,2,3} and transition matrix 2.

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$
 Then the stationary distribution is:

A)
$$\frac{2}{9}, \frac{4}{9}, \frac{1}{3}$$
 B) $\frac{1}{9}, \frac{3}{9}, \frac{5}{9}$ C) $\frac{4}{9}, \frac{1}{9}, \frac{4}{9}$ D) $\frac{3}{9}, \frac{3}{9}, \frac{1}{3}$

$$\frac{1}{9}, \frac{3}{9}, \frac{5}{9}$$

$$(1) \qquad \frac{4}{9}, \frac{1}{9}, \frac{4}{9}$$

$$\frac{3}{9}, \frac{3}{9}, \frac{1}{3}$$

Let $X_1, X_2, ..., X_n$ (n > 1) be a random sample from uniform U[2,10] population 3.

$$Y = log\left(\prod_{i=1}^n \frac{1}{{Z_i}^2}\right)$$
, where $Z_i = \frac{10 - X_i}{8}$. Then $E(Y) = ?$

A)
$$n^2 + 2n$$
 B) n^2

B)
$$n^2$$

Under which of the following conditions negative binomial NB(r, p) converges 4. to Poisson(θ)?

A)
$$r \to \infty, p \to 1 \text{ and } r(1-p) = \theta$$

B)
$$r \to \infty, rp = \theta$$

C)
$$p \rightarrow 1$$
 and $r(1-p) = \theta$

None of these D)

Let X be a non-negative integer valued random variable with pgf P(s). 5. Then the pgf of the random variable (X < n) is:

A)
$$\frac{P(s)}{1-s}$$

B)
$$\frac{sP(s)}{1-s}$$

C)
$$\frac{P\left(s^{\frac{1}{2}}\right) + P\left(s^{-\frac{1}{2}}\right)}{2}$$

C)
$$\frac{P\left(s^{\frac{1}{2}}\right) + P\left(s^{-\frac{1}{2}}\right)}{2}$$
 D)
$$min\left\{P\left(s^{\frac{1}{2}}\right), P\left(s^{-\frac{1}{2}}\right)\right\}$$

6.	Let X be a non-negative integer valued random variable with pgf $P(s)$. Then
	$\int_0^1 P(s)ds = ?$

- A) $E\left(\frac{1}{y+1}\right)$ B) $E\left(\frac{X}{y+1}\right)$ C) $E\left(\frac{1}{y}\right)$ D) $E\left(\frac{X}{y+2}\right)$
- The correlation coefficient between the number of success and the number of 7. failures in a binomial distribution is:
 - -1A)
- 0 B)
- C) 1
- D) ± 1
- Let *X* be a random variable with pdf $f(x) = \begin{cases} \frac{2x}{\pi^2}, & 0 < x < \pi \\ 0, & otherwise \end{cases}$. Then the pdf of 8. Y = sinX is:

 - A) $\frac{2}{\pi\sqrt{1-y^2}}$, 0 < y < 1 B) $\frac{1}{\pi\sqrt{1-2y^2}}$, $0 < y < \frac{1}{\sqrt{2}}$

 - C) $\frac{\pi}{2\sqrt{1-y^2}}$, 0 < y < 1 D) $\frac{\pi}{\sqrt{1-2y^2}}$, $0 < y < \frac{1}{\sqrt{2}}$
- Let X be a random variable with E(X) = 0, $E(X^2) = 1$ and fourth central 9. moment $\mu_4 = 16$. Then the upper bound of $P\{|X| > 2\}$ is:
 - A) $\frac{5}{9}$
- B) $\frac{1}{4}$ C) $\frac{3}{4}$ D) $\frac{3}{8}$

- 10. Let (X,Y) be a random vector with distribution function $F(x,y) = (1 - e^{-x})(1 - e^{-y}), 0 < x < \infty, 0 < y < \infty.$ Then P(X < 2Y) is:
 - A) $\frac{1}{3}$ B) $\frac{1}{2}$ C) $\frac{2}{3}$ D) $\frac{3}{4}$

- Let X_1 and X_2 be independent random variables with pdf $f(x) = \begin{cases} 1.0 < x < 1 \\ 0. otherwise \end{cases}$. 11. Then $P\{|X_1 - X_2| < 0.5\}$ is :
 - A) $\frac{1}{4}$ B) $\frac{1}{8}$ C) $\frac{3}{4}$
- D)

12.	Let X	X_1, X_2, \dots, X_n	be a rar	ndom sampl	e of si	ze n from uniform d	istribution with pdf		
	f(x)	$= \begin{cases} \frac{1}{6}, -3 < 0, other$	< <i>x</i> < 3 erwise	. The large sample distribution of $\sqrt{n}\bar{X}$ is:					
	A)	N(0,3)	B)	U(-1,1)	C)	$U\left(-\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}}\right)$ D)	$U\left(0,\frac{2}{\sqrt{n}}\right)$		
13. Characteristic function of the random variable X is given by $\varphi(t) = \left(\frac{\sin t}{t}\right)$									
	Then	P(1 < X)	< 2) is:						

A) $\frac{1}{8}$ B) $\frac{2}{8}$ C) $\frac{3}{8}$ D) $\frac{1}{2}$

14. Let Y_1 , Y_2 , Y_3 and Y_4 be four uncorrelated random variables each with variance 9, then the value of the correlation coefficient between $Y_1 + Y_2 + Y_3$ and $Y_2 + Y_3 + Y_4$ is:

A) $\frac{2}{3}$ B) $\frac{1}{3}$ C) 0 D) 1

15. A normal population has mean 10 and standard deviation 2. What is the probability that the mean of a sample of size 256 will be greater than 10?

A) 0.4562 B) 0.4265 C) 0.4652 D) 0.5

16. Two friends decided to meet between 2 pm and 3 pm with the condition that one waits the other for at most 20 minutes. The probability of chance of their meeting is:

A) $\frac{4}{9}$ B) $\frac{5}{9}$ C) $\frac{1}{3}$ D) $\frac{2}{3}$

17. Let *X* and *Y* be two independent Poisson random variables with mean values 2 and 3 respectively. Then var(X|X + Y = 10) is:

A) 4 B) 6 C) $\frac{12}{5}$ D) $\frac{6}{5}$

18. Which one of the following is an example of negatively skewed data?

A) age of death from natural causes

B) distribution of income in a country

C) distribution of scores on a difficult exam

D) distribution of movie ticket sales

	random sample of size n taken from uniform $U[0, \theta]$ distribution?										
	A)	$X_{(n)}$	B)	$X_{(1)} + X_{(n)}$	C)	$(n+1)X_{(n+1)}$	n) D)	$2ar{X}$			
20.				e n is taken for destimator o		(μ, 1) popul	ation. V	Which one of the			
	A)	$\bar{X}^2 + \frac{n+1}{n}$	B)	$\bar{X}^2 + \frac{n-1}{n}$	C)	$\bar{X}^2 - \frac{1}{n}$	D)	$\bar{X}^2 + \frac{1}{n}$			
21.				vation drawn a estimator of	_	ormal popul	ation N	$I(0, \sigma^2)$. Which of the			
	A)	X	B)	X	C)	X^2	D)	All of these			
22.	Let X_1 , X_2 and X_3 be three independent observations on a random variable X , which follows Poisson distribution with parameter θ . Then which of the following is a sufficient estimator of θ ?										
	A)	$\frac{X_1 + 2X_2 + 3X_3}{7}$	<u> </u>	B)	X_1 +	$2X_2 + 3X_3$					
	C)	$X_1 + X_2 +$	X_3	D)	None	e of these					
23.	Let X	$a \sim b(1, p), p$	$\in \left[\frac{1}{4}, \frac{3}{4}\right]$	$\left[\frac{3}{4}\right]$. The maxim	num lik	xelihood est	imator	of p is given by:			
	A)	$\frac{2X+1}{4}$	B)	$\frac{X+2}{4}$	C)) X	D)	$\frac{3-2X}{4}$			
24.	Let X	' be a randor	n varia	able with pdf	$f_{\theta}(x)$:	$= \begin{cases} \frac{1}{\theta}, & 0 \leq \\ 0, & othe \end{cases}$	$x \le \theta$ erwise				

Which of the following estimators is not a consistent estimator for θ based on a

19.

25. Let T_1 be the most efficient estimator of θ and T is another estimator whose efficiency is e. Then the correlation between T_1 and T is:

C) $\frac{X}{2}$

D)

A) \sqrt{e} B) $\frac{1}{\sqrt{e}}$ C) $\frac{1}{e}$ D) e

2*X*

The UMVUE of θ is given by:

A)

X

B)

26.	The most powerful test given by Neyman-Pearson for testing a simple hypothesi against a simple alternative is strictly unbiased if:									
	A)	$\alpha = 1$	B)	$0 < \alpha < 1$ C)	$0 \le \alpha < 1$ D)	$0 \le \alpha \le 1$				
27.	hypo	ample of size othesis is/are	e UMP?		$I[0, \theta]$. Then which	of the following				

- A) $H_0: \theta = \theta_0 \text{ vs } H_1: \theta > \theta_0$
- B) $H_0: \theta = \theta_0 \text{ vs } H_1: \theta < \theta_0$
- C) $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$
- D) All of these
- 28. A test is said to be consistent if:
 - A) Size of the test tends to unity as the sample size tends to infinity
 - B) Power of the test tends to unity as the sample size tends to infinity
 - C) Power and size tends to zero as sample size tends to infinity
 - D) power and size tend to unity as sample size tends to infinity
- 29. Let $X_1, X_2, ..., X_n$ be iid random variables with finite expectation and let N be a random variable independent of X_i , i = 1, 2, ..., n. Define $Y = \sum_{i=1}^{N} X_i$, then var(Y) is:
 - A) $E(N)var(X_i)$
 - B) $E(N)var(X_i) + [E(X_i)]^2 var(N)$
 - C) $[E(X_i)]^2 var(N) + E[N^2] var(X_i)$
 - D) None of these
- 30. If $X_1, X_2, ..., X_n$ is a random sample from uniform $U[0, \theta]$, then which of the following statements are correct?
 - 1. MLE of θ is same as the estimate given by method of moments
 - 2. MLE of θ is $X_{(n)}$, the largest observation in the sample
 - 3. $\frac{n+1}{n}X_{(n)}$ is an unbiased estimator of θ
 - 4. Method of moment estimator is unbiased for θ
 - A) 1, 3 & 4 only B) 2,3 & 4 only
 - C) 1 & 3 only D) 2 & 4 only

	A)	$\frac{1}{3}$	B)	<u>2</u> 3	C)	$\frac{1}{2}$	D)	$\frac{1}{4}$				
34.	If $(X,Y) \sim BN(0,0,1,1,0.5)$, then $P\{XY > 0\}$ is:											
	A)	$\frac{1}{2}$	B)	0	C)	$\frac{1}{3}$	D)	$\frac{1}{4}$				
35.	Let	$Y_1, Y_2,, Y_n$ 1	oe iid ran	dom variat	oles wit	th pdf $g(x)$ =	$= \begin{cases} \frac{1}{N}, 3 \\ 0, \end{cases}$	x = 1, 2,, N, otherwise				
	The MLE of <i>N</i> has which one of the following properties?											
	 A) Unbiased, sufficient and complete B) Consistent, sufficient and complete C) Unbiased and sufficient D) Consistent and sufficient 											
36.	Ther A)	ndom sample n 95% asymp (0.78,4.72 (2.25,3.72	totic con	fidence inte B)	erval of (0.78	θ is: ,3.72)	oution	with parameter θ .				
37.	 Let X be a Poisson random variable with parameter θ. Then distribution function of X can be expressed in terms of: A) Gamma function B) Incomplete gamma function 											
	C)	Beta functi	on	D)	Incom	nplete beta fi	ınction	1				

31. Let $X_1, X_2, ..., X_n$ be a random sample from a Poisson(θ) population and let

B) $\sigma^2 \cos^2(\mu + \sigma^2)$

Kendall's tau statistic for the bivariate data (1,9), (2,10),(3,8) and (4,11) is:

A) $\left(\frac{n-1}{n}\right)^T$ B) $\frac{T}{n}\left(1-\frac{1}{n}\right)^{T-1}$ C) $\left(\frac{n+1}{n}\right)^T$ D) None of these

 $T = \sum_{i=1}^{n} X_i$. Then the UMVUE of $exp(-\theta)$ is:

If $X \sim N(\mu, \sigma^2)$, then approximate variance of *sinX* is:

C) $sin^2(\sigma^2 + \mu)$ D) $\sigma^2 cos^2 \mu$

32.

33.

A) $\sigma^2 \sin^2 \mu$

38.	 Which of the following distributions do not belong to the exponential family? 1. Uniform family of distributions <i>U</i>[α, β] 2. Cauchy family of distributions <i>C</i>[α, β] 3. Gamma family of densities <i>G</i>[α, β] 4. Family of multinomial distributions 									
		1,2 & 3 on 2 & 4 only								
39.	Let $X_1, X_2,, X_{10}$ be independent normal random variables with mean 2 and variance 1 and let $Z = \sum_{i=1}^{10} X_i^2$. Then $E(Z) = ?$									
	A)	50	B)	40		C)	45	D)	None of these	
40.	For the SPRT with stopping bounds A and B with $B < A$ and strength (α, β) , then									
	the stopping bounds hold:									
	A)	$A \le \frac{1-\beta}{\alpha} \ ,$	$B \geq \frac{1}{2}$	$\frac{-\alpha}{\beta}$	B)	$A \leq$	$\frac{\alpha}{1-\beta}$, $B \ge \frac{1}{1-\beta}$	$\frac{\beta}{-\alpha}$		
	C)	$A \leq \frac{1-\beta}{\alpha}, E$	$\beta \geq \frac{\beta}{1-\alpha}$	$\frac{1}{\alpha}$	D)	None	e of these			
41.		random sam ₁₎) is, wh					²) population statistic.	, the v	value of	
							$\frac{-\sigma}{\sqrt{\pi}}$	D)	$\frac{-\sigma}{\sqrt{2\pi}}$	
42.	Lebes	sgue measur	e of the	e set o	f irrati	onal ni	umbers in [–	2, 2] is	S:	
	A)	0	B)	4		C)	less than 4	D)	2	
43.		$G_n = \{ \omega \in R \}$ $\sup A_n \text{ is :}$: 0 < α) < 5 -	$+\frac{cosn\pi}{n}$	$\left\{ \frac{\tau}{2} \right\}$ be a	sequence of	sets. T	Then	
	A)	(0,5)	B)	[0,5]		C)	(0,5]	D)	Does not exist	
44.	If <i>i</i> is	a complex 1	number	then	the val	lue of a	i^{-i} is:			
	A)	$\frac{i\pi}{2}$	B)	$e^{\frac{-\pi}{2}}$		C)	$e^{\frac{\pi}{2}}$	D)	$-\frac{i\pi}{2}$	

- 45. For what value of α does the strong law of large numbers (SLLN) hold for the sequence $P\{X_n = \pm n^{\alpha}\} = \frac{1}{2}$?
 - A) $0 < \alpha < 1$ B) $\alpha > 1$ C) $\alpha < \frac{1}{2}$ D) $\alpha > \frac{1}{2}$
- 46. If $X_1, X_2, ..., X_n$ are n iid negative binomial random variables NB(1; p), then the distribution of min $(X_1, X_2, ..., X_n)$ is:
 - A) Geometric with parameter $(1-p)^n$
 - B) Geometric with parameter $1 p^n$
 - C) Geometric with parameter $1-(1-p)^n$
 - D) None of these
- 47. Baye's estimator of the parameter θ under the quadratic loss function is the----.
 - A) Mean of posterior distribution
 - B) Median of posterior distribution
 - C) Variance of posterior distribution
 - D) None of these
- 48. The distribution of consistent solution of the likelihood equation is :
 - A) Truncated random variable
 - B) Standard normal variable
 - C) Chi-square variable
 - D) Degenerte random variable
- 49. Given *P* is an ergodic chain with stationary distribution $\left\{\frac{3}{8}, \frac{1}{8}, \frac{4}{8}\right\}$. Then

 $\lim_{n\to\infty} P^n = ?$

A)
$$\begin{bmatrix} \frac{3}{8} & \frac{1}{8} & \frac{4}{8} \\ \frac{1}{8} & \frac{3}{8} & \frac{4}{8} \\ \frac{1}{8} & \frac{3}{8} & \frac{1}{8} \end{bmatrix}$$
 B)
$$\begin{bmatrix} \frac{3}{8} & \frac{1}{8} & \frac{4}{8} \\ \frac{3}{8} & \frac{1}{8} & \frac{4}{8} \\ \frac{3}{8} & \frac{1}{8} & \frac{4}{8} \end{bmatrix}$$
 C)
$$\begin{bmatrix} \frac{3}{8} & \frac{1}{8} & \frac{4}{8} \\ \frac{3}{8} & \frac{1}{8} & \frac{4}{8} \\ \frac{3}{8} & \frac{1}{8} & \frac{4}{8} \end{bmatrix}$$
 D) None of these

- 50. Identify the correct statement/s:
 - 1. Uniformly most accurate lower confidence bound has the smallest probability of false coverage.
 - 2. Confidence level has the smallest probability of true coverage.
 - A) 1 only B) 2 only C) Both 1& 2 D) Neither 1 nor 2

- 51. Consider the following statements:
 - 1. $X_i \sim N(\theta, \sigma^2)$; σ^2 known and θ unknown, i = 1, 2, ..., n.
 - 2. $X_i \sim b(1, \theta), \theta$ unknown, i = 1, 2, ..., n

The variance of sample mean coincides with the Cramer-Rao lower bound for every θ , for:

- A) 1 only
- B) 2 only
- C) Both 1& 2 D)
 - Neither 1 nor 2
- Let $X_1, X_2, ..., X_n$ be a random sample from uniform $U(0, \theta), \theta > 0$. To test 52.

 H_0 : $\theta = \theta_0$ vs H_1 : $\theta = \theta_1(\theta_1 > \theta_0)$, consider the test function

 $\varphi(x) = \begin{cases} 1 & \text{if } X_{(n)} > \theta_0 \\ \alpha, & \text{if } 0 < X_{(n)} < \theta_0 \end{cases}$, then the size and power of the test are respectively:

A) α , $1 - \alpha$

- B) $\frac{\alpha}{2}$, $1-\alpha$
- C) α , $1 \left(\frac{\theta_0}{\theta_1}\right)^n (1 \alpha)$ D) 1α , $1 \left(\frac{\theta_0}{\theta_1}\right)^n (1 \alpha)$
- Let $\Omega = \{0,1,2,...\}$ and \mathcal{A} is the power set of Ω . For any $A \subset \Omega$, define $\mu(A) =$ 53. number of non - negative integers in A and if $X(\omega) = 2^{-\omega}$. Then $\int_0^\infty X \, d\mu$ is ?
 - A) 1
- B)
- C) 0
- D) None of these
- Let \bar{A} be any generalized inverse of A and $\bar{A}A = H$. Identify the correct 54. statement/s:
 - 1. AH = A and $H\bar{A} = \bar{A}$
- 2. Trace H = Rank H

- 1 only A)
- B) 2 only
- C) Both 1& 2 D)
 - Neither 1 nor 2
- For the matrices $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$. 55.

Identify the correct statements:

- ABA = A1.
- 2. BA is idempotent
- 3. $Rank A \neq Rank BA$
- 4. $Rank\ BA = Trace\ BA$
- A)
- 2 &3 only B) 1,2 &3 only C) 2,3&4 only D) 1,2 &4 only

	1. (b –	$-1, k-\lambda, b-$	k, k, λ)	2.	(b, ν	$-k$, ι	y, b-r,	b-2r	$(+\lambda)$
	3. $\left(\frac{v(v)}{2}\right)$	$(\frac{-1)}{2}$, 2, ν , ν – 1	1,1)	4. ([k,b,r,	ν,λ-	1)		
	,	, 2 & 3 only , 3 & 4 only			1, 3 1, 2		•		
57.	Three different methods of analysis are used to determine the amount of a certain constituent in a sample. Five different analysts generate one observation each under each of these methods. Various sum of squares are obtained as TSS=97.6, SSA (Analysts)=4.27, SSB(Methods)=79.6. The value of MSE, mean sum of squares due to error is:								
	A) 2	.89 B)	1.9	6	C)	1.7	2	D)	1.53
58.	The following data represents the yield from sugar cane plants under 5 treatments tried in 4 randomized blocks. The estimate of missing value is:								
		Treatment		Blo	cks				
			1	2	3	4			
		A	20	13	12	35			
		В	24	28	30	25			
		C D	42 28	22 48	21 27	46 ?			
		E	67	33	39	50			
		L	07	33	37	<u> </u>			
	A) 4	0 B)) 43		C)	46		D)	44
59.	If the stratum sizes are in the ratio 1: 2: 3 and stratum mean squares are in the ratio 2:3:4, then the samples drawn from the stratum will be in the ratio of:								
			amples	drawn		he stra		ll be in	
	ratio 2:		•				atum wi	ll be in D)	
60.	ratio 2:: A) 1	3:4, then the s) 2:3	3:6	from t	1:3	atum wi :6	D)	the ratio of: 1: 6:3

Consider a BIBD with parameters (b, k, v, r, λ) . Which of the following **cannot**

possibly be the parameters of a BIBD?

56.

Simple random sampling D) None of these

C)

	A)	15	B)	18		C)	12	D)	19 3		
62.		s_w^2 and s_b^2 deveen clusters.						clusters	and variance		
	A)	$s_b^2 = s_w^2$	B)	$s_b^2 \ge$	S_w^2	C)	$s_b^2 \le s_w^2$	D)	None of these		
63.	-				ents and 5 blocks, the sum of the ranks for 17. Friedman's F based on above data is:						
	A)	23.28	B)	-5.6		C)	-68.06	D)	8.28		
64.	A sample of size 2 from a population of size 4 with units U_1 , U_2 , U_3 , U_4 is to be selected. Match List I (possible samples) with List II (sampling techniques):										
	List 1					List 11					
	a. All samples (U_i, U_j)					ystema	tic samplin	ıg			
	(i, j = 1, 2, 3, 4)										
	b. A	ll samples (U	(U_i, U_j)		2. SRSWR						
	(i <	< j; i, j = 1,2	,3,4)								
		Il samples (U = 1,2; k = 2)	3. SRSWOR						
	A)	a-2, b-3, c-	1		B)	a-1, t	o-2, c-3				
	C)	a-2, b-1, c-	3		D)	a-1, ł	o-3, c-2				
65.	150	-	The nu	mber o	f perso	ons per	household	in the s	illage containing cample were 5,6,4,7 e is:		
	A)	3750	B)	750		C)	1500	D)	100		

61. Let $X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim N(\mu, \Sigma)$, where $\mu = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ and $\Sigma = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Then $E(X'\Sigma^{-1}X)$ is?

	A)	$\frac{2}{3}$	B)	4 9	C)	<u>5</u> 9	D)	$\frac{1}{9}$			
67.	With usual notations, the ratio estimator of the population mean is more precise than the sample mean whenever $\rho > \frac{3}{8}$ if:										
	A)	$C_y = C_x$			$C_y =$						
	C)	$3C_y = 4C_x$:	D)	$4C_y$	$=3C_x$					
68.	A) C)	Set of ration Both A and	nal numb l B	pers B) D)	Set o	f irrational re of these	number	n			
69.	Let $\{a_n\}$ be a sequence of real numbers defined by $a_n = \begin{cases} \left(1 + \frac{1}{n}\right)^n, & \text{if } n \text{ is odd} \\ \left(1 - \frac{1}{n}\right)^n, & \text{if } n \text{ is even} \end{cases}$										
	Then $limSupa_n$ is:										
	A)	e	B) $\frac{1}{\epsilon}$	<u>1</u>	C)	e^2	D)	None of these			
70.		f be defined sure of the se			0, f(x)	$) = x sin\left(\frac{1}{x}\right)$	(x > 0)	0. The Lebesgue			
	A)	$\frac{1-log2}{\pi}$	B)	$\frac{log2}{\pi}$	C)	$\frac{\pi}{1-log2}$	D)	$\frac{\pi}{1+log2}$			
71.		sider the mul									
	X =	$\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 1 & 2 \end{bmatrix}$ and	$d\beta' = (\beta$	$eta_0,eta_1)$. The	en var	$\left(\hat{eta}_{1} ight)$?					
	A)	$\frac{\sigma^2}{3}$	B)	$\frac{\sigma^2}{5}$	C)	$\frac{\sigma^2}{6}$	D)	$\frac{\sigma^2}{2}$			
72.	If X	is $N_m(\mu, \Sigma)$,	where A	is an $m \times n$	m sym	metric matr	ix and <i>I</i>	β is an $r \times m$			

If a sample of size 2 is drawn from a population of size 3 by the method of

SRSWR, then the probability of selecting a specified unit in any sample would be:

66.

C) $B\Sigma A = I$

D) $B\Sigma A = 0$

matrix, then X'AX and BX are independent if and only if:

B)

A)

 $B\Sigma A = A$

 $B\Sigma A = B$

73.	Let $h(x) = \frac{d}{dx} \int_{x}^{x^2} logt dt$. Then $h(e)$ equals:											
	A)	4 <i>e</i> – 1	B)	4 log 2	C)	4log2-1	1 D)	$\frac{e}{log2}$				
74.	Whi	ch one of the	follow	ving options	is/are c	orrect?						
	1.	purchasing	g power	r of money=	cost of	1 living index						
	2. Real wages = $\frac{money\ wages \times 100}{cost\ of\ living\ index}$											
	A)	1 only	B)	2 only	C)	Both 1& 2	D)	None of these				
75.	The maximum value of the function $h(x_1, x_2, x_3) = x_1 x_2 x_3, 0 \le x_i \le 3$,											
	$i = 1,2,3; x_1 + x_2 + x_3 = 3$ is:											
	A)	27	B)	9	C)	3	D)	1				
76.	Prob	ability distri	bution	of the offspr	ing dis	tribution is g	given as	follows:				
	The	X = x $f(x)$ probability	$\begin{array}{c c} 0 \\ \hline \frac{1}{2} \end{array}$	$ \begin{array}{c cccc} 1 & 2 \\ \hline \frac{1}{4} & \frac{1}{8} \end{array} $ nate extinction	$\frac{3}{\frac{1}{8}}$ on is:							
		0.25			C)	0.6	D)	1				
77.	Whic	ch one of the	follow	ving function	ns is n o	ot convex in	n (<i>1</i> ,∞)	?				
	A)	x^2	B)	$x + \frac{1}{x}$	C)	$log\left(\frac{1}{x}\right)$	D)	logx				
78.		-) . Then the l	Lebesg	ue Stieltjes r	neasure	function				
		rated by $g(x)$										
	A)	1	B)	-1	C)	0	D)	None of these				

Identify the correct statements: 79.

- R square value decreases or retains the same value when additional variables are included in the model.
- R square has advantages over adjusted R square in regression modelling. 2.
- Adjusted R square value decreases when insignificant variables included in 3. the model.
- Adjusted R square value increases when significant variables included in the model.
- 1, 3 & 4 only A)
- B) 2 & 4 only
- 1 & 3 only C)
- 3 & 4 only D)
- 80. The minimum value of var(Y - cX), for all the values of 'c' is given by:
 - A)
- B)
- C) $\rho^2 var(Y)$ D) $(1 \rho^2) var(Y)$