1.	Which among the following are examples of operant conditioning? 1. A rat pressing a lever for food 2. A dog salivating at the sound of a bell 3. A child being rewarded for completing homework 4. A bird learning to navigate using the sun A) 1 & 2 only B) 1 & 3 only C) 2 & 4 only D) 3 & 4 only										
	A)	1 & 2 only	B)	1 & 3 or	nly	C)	2 & 4 only	v D)	3 & 4 only		
2.	Homonymy refers to: A) One species having multiple names B) Multiple species having the same name C) Species changing names over time D) Naming rules for fossils										
3.	The te A) B) C) D)	That evolved in the common ancestor of a clade That evolved multiple times in different clades									
4.	The th A) C)	nree-domain s Carl Linnaeu Carl Woese		В		Ernst	Mayr es Darwin				
5.	a. Phe b. Cla c. Mc d. Phy	List I enetic system adistic system blecular taxon ylogenetic sys a-2, b-4, c-3, a-4, b-1, c-2,	omy stem	1. Based 2. Based 3. Based 4. Based	ist II l on t l on c l on g l on s	he evo overall genetic hared a-3, b	lutionary hi similarity and molect derived chat -2, c-1, d-4 -3, c-4, d-1	ılar marl	kers		

- 6. RAPD markers:
 - A) Require knowledge of the DNA sequence
 - B) Do not require prior knowledge of the DNA sequence
 - C) Are not polymorphic
 - D) Require restriction enzymes
- 7. The species of honey bee commonly used in commercial beekeeping in Europe:
 - A) Apis mellifera
- B) Apis cerana
- C) Apis dorsata
- D) Apis florea

8.	Assertion (A): Reason (R):		-	m includes Bacteria, Archaea, and Eukarya with membrane-bound nuclei.								
	B) Both A a C) A is true	Both A and R are true, and R is the correct explanation of A. Both A and R are true, but R is not the correct explanation of A. A is true, but R is false. A is false, but R is true.										
9.	A) The evoB) The geoC) The life	B) The geographical distribution of speciesC) The life span of various organisms										
10.	0. The type of aquaculture which involves the farming of freshwater fish in conenvironments:											
	A) Maricul	ture 1 culture	B) D)	Finfish culture Ornamental fish culture								
11.	 The main purpose of Integrated Pest Management (IPM) is to: A) Use as many pesticides as possible B) Reduce the pest population below economically damaging levels C) Eliminate pests entirely D) Use only organic methods 											
12.	Which of the for A) Weevil		non per er mite	st of stored food grains? C) Thrips D) Caterpillar								
13.	precursors: A) Glycoly		in the s B) D)	ynthesis of glucose from non-carbohydrate Krebs cycle Glycogenesis								
14.	A) Synthes:	primarily refers to is of fatty acids wn of fatty acids	B)	Conversion of glucose to glucose Conversion of glycerol to glucose								
15.	A) Light ab	does autoradiograsorption scattering	iphy rel B) D)	y on? Radioactive decay Fluorescence								
16.	 C) Electron scattering D) Fluorescence What is the primary advantage of using a transmission electron microscope (TEM)? A) It provides three-dimensional images. B) It allows observation of live specimens. C) It achieves high-resolution images at the atomic level. D) It uses visible light for imaging. 											

1/.		romatography, the term "rete		
	A)	It takes for a solvent to pas	s throu	gh the column
	B)	It takes for a compound to	elute fi	rom the column
	C)	Required for sample prepar	ration	
	D)	Required for a sample to re		uilibrium
		1	•	
18.	The p	orimary use of an atomic abso	orption	spectrophotometer is:
	A) 1	Measuring the concentration	_	
	B)	Analyzing radioactive sam	_	
	C)	Determining metal concent	•	in a solution
	D)	Measuring light scattering	uuuone	in a solution
	D)	Wiedsuring fight seattering		
19.	The t	vne of microscopy which is l	hest for	studying the surface structure of
1).	specii		0051 101	studying the surface structure of
	A)	Light microscopy		
	B)	Transmission electron micro	roscon	7
	C)	Scanning electron microsco		Y
	D)	Phase contrast microscopy		
	D)	Thase contrast inicroscopy		
20.	The to	erm "Zymogen" refers to:		
20.	A)	An active enzyme	B)	An inactive enzyme precursor
	C)	A coenzyme	D)	An enzyme inhibitor
	C)	71 Cochizyine	D)	7 th chayme minortor
21.	The n	orimary function of lipids in	biologi	cal system is:
	A)	Genetic coding	0101051	
	B)	Structural components of n	nemhra	ines
	C)	Providing a rapid source of		
	D)	All of the above	cherg.	y
	D)	An of the above		
22.	The n	nain function of the Krebs cy	vele is 1	· 0.
	A)	Break down glucose into ex		
	B)	Produce ATP from ADP	nergy	
	C)	Generate electron carriers	for the	electron transport chain
	D)	Synthesize glucose from no		-
	D)	Synthesize glucose from no	on-carc	onydrate sources
23.	Asser	tion (A): Cnidarians have	radial s	ymmetry
23.		` /		adaptation to a sessile lifestyle.
	Rease	m (R) . Radiai symmen y	15 411 6	idaptation to a sessife mestyle.
	A)	Both A and R are true, and	R expl	ains A
	B)	Both A and R are true, but	•	
	C)	A is true, but R is false.	TC GOOS	not explain 11.
	D)	A is false, but R is true.		
	D)	A is faise, but K is true.		
24.	The	rowth nhase which is charac	terized	by the maximum rate of cell division:
- 1.	A)	Lag phase which is charac	B)	Exponential (log) phase
	C)	Stationary phase	D)	Death phase
	\sim	Sunonary phase	D)	Double phase

25.	The an A)	ntibiotics w Penicillin			_		synthesis: Vancomyci	in D)	Rifampicin				
26.	Which A) B) C) D)	ich of the following is a characteristic feature of Gram-negative bacteria? Thick peptidoglycan layer Stains purple in Gram staining Outer membrane containing lipopolysaccharides Lack of a cell wall sertion (A): Deuterostomes develop the anus first.											
27.		tion (A): n (R):			•		nus first. forms from	the blast	opore.				
	A) B) C) D)	Both A and R are true, and R explains A. Both A and R are true, but R does not explain A. A is true, but R is false. A is false, but R is true.											
28.	Which A) C)	n level of on Cellular le Organ lev	evel	n is cha	aracteri B) D)	Tissu	f cnidarians? ne level n system lev						
29.	The vo A) C)	ector which Plasmids Cosmids	ı can carry	/ large	fragme B) D)	Bacte	DNA: eriophages tle vector						
30.	Accor A) B) C) D)	Both X ch	romosome romosome re two acti	es in fe in fem ve X cl	males a ales is hromos	are act rando somes.	mly inactiva						
31.	Which A) C)	of the foll Down syn Cystic fibr	drome	orders	is cause B) D)	Turn	a single gen er syndrome efelter syndr	e	on?				
32.	Chron A) B) C) D)	Inborn errors of metabolism Syndromes such as Down syndrome											
33.	Shuttle A) B)	e vectors an Only prok Only yeas	aryotic ce		nction i B) D)	Only	eukaryotic prokaryotic		aryotic cells				

- 34. Which of the following is an example of a sex-linked disorder?
 - A) Sickle cell anemia
- B) Hemophilia
- C) Cystic fibrosis
- D) Tay-Sachs disease
- 35. Which of the following techniques involves introducing recombinant DNA into a host organism?
 - A) DNA sequencing
- B) Gene cloning
- C) Gene transfer technology D)
- Chromosome jumping
- 36. Which of the following best describes Intellectual Property Rights (IPR) in biotechnology?
 - A) Legal rights to sell agricultural products
 - B) Protection of inventions and innovations
 - C) Rights to use genetic material without restrictions
 - D) Laws governing environmental protection
- 37. Match the Following List I with List II:

List I

- a. Ligands 1. Initiates cellular responses
- b. Receptors 2. Transmit signals inside the cell

List II

- c. Second messengers 3. Bind to receptors on target cells
- d. G-proteins 4. Amplify the signal inside the cell
- A) a-3, b-1, c-2, d-4
- B) a-1, b-3, c-4, d-2
- C) a-1, b-2, c-3, d-4
- D) a-3, b-2, c-1, d-4
- 38. In a fragmented forest ecosystem, how would the edge effect most likely alter species composition at the boundary between the forest and an open area?
 - A) Increase in edge species that thrive in transitional zones
 - B) Decrease in biodiversity due to reduced habitat size
 - C) Increase in core species that require deep forest habitats
 - D) Uniform distribution of species across the edge and core areas
- 39. Given a population experiencing logistic growth, how would you expect the population growth rate to change as the population approaches its carrying capacity?
 - A) The growth rate increases exponentially due to abundant resources.
 - B) The growth rate slows down and stabilizes as resources become limited.
 - C) The growth rate remains constant regardless of population size.
 - D) The growth rate decreases sharply to zero as the population overshoots the carrying capacity.
- 40. Identify the true statement about community ecology:
 - A) Edge effects always negatively impact the organisms in the habitat.
 - B) Ecotones are areas that are completely separate from adjacent communities.
 - C) Community structure does not change over time.
 - D) Edge effects can lead to increased biodiversity in habitats.

41.	In the context of Environmental Impact Assessment (EIA), which statement is true?											
	A)	EIA is only required for la	ırge-sc	eale construction projects.								
	B)	EIA involves public partic	ipatio	n and stakeholder engagement.								
	C)	EIA guarantees that all en	vironn	nental impacts will be mitigated.								
	D) EIA is not necessary for projects with minimal environmental impact.											
42.	Eucl	nromatin is characterized by:										
	A)	Densely packed DNA	B)	Active gene transcription								
	C)	Inactive genes	D)	Visible during cell division								
43.	Biol	Biological magnification is the:										
	A)	Increase in the population	of spe	ecies								
	B)		_	es in the higher trophic levels of the food chain								
	C)	Magnification of species' roles in ecosystems										
	D)	Increase in energy at each	trophi	ic level								
44.	In ar	n energy pyramid, which leve	el cont	ains the most energy?								
	A)	Primary consumers	B)	Secondary consumers								
	C)	Tertiary consumers	D)	Producers								
45.	Wha	at is an ecotone?										
	A)	A distinct zone of high bio	odivers	sity								
	B)											
	C)											
	D)	The climax community of	an eco	osystem								
46.		Which organelle is involved in modifying, sorting, and packaging proteins for secretion?										
	A)	Mitochondria	B)	Golgi apparatus								
	Ć)	Ribosome	Ď)	Lysosome								
47.	Wha	at structure forms during the	eytoki	nesis of animal cells?								
	A)	Cell plate	B)	Cleavage furrow								
	C)	Spindle fibers	D)	Nuclear envelope								
48.	The	type of immunity characteriz	zed by	the presence of antibodies acquired								
	throu	ugh vaccination:										
	A)	Innate immunity	B)	Passive immunity								
	C)	Active immunity	D)	Natural immunity								
49.		ch of the following describes une response?	the ro	ole of the complement system in the								
	A)	It produces antibodies.										
	B)	It enhances phagocytosis a	and ca	uses lysis of pathogens.								
	C)	It activates T cells.										
	D)	It is involved in the produc	ction c	of hormones.								

50.	In ex	sperimental embryology, constriction experiments are primarily used to study the:
	A)	Effects of environmental factors on development
	B)	Mechanisms of cell communication
	C)	Effects of physical forces on embryo formation
	D)	Process of gene regulation
51.	Whi	ch of the following best describes "potency" in embryonic cells?
	A)	The ability of cells to perform specific functions
	D.	TD1 1:00 11:

- B) The range of cell types a stem cell can differentiate into
- C) The potential for cells to undergo apoptosis
- D) The process of cell division and growth
- 52. Major Histocompatibility Complex (MHC) molecules are crucial for the:
 - A) Recognition of self vs. non-self by immune cells.
 - B) Production of antibodies.
 - C) Activation of complement proteins.
 - D) Direct killing of pathogens.
- 53. An example of a primary immunodeficiency disorder is:
 - A) Allergic rhinitis
 - B) Systemic lupus erythematosus
 - C) Severe combined immunodeficiency (SCID)
 - D) Rheumatoid arthritis
- 54. Codominance is best exemplified in:
 - A) Flower color in snapdragons
 - B) Blood type AB in humans
 - C) Height in pea plants
 - D) All of the above
- 55. Complementary gene action occurs when:
 - A) Two genes interact to produce a single trait
 - B) One gene masks the effect of another
 - C) Both genes contribute equally to the phenotype
 - D) None of the above
- 56. The Rh blood group system is an example of:
 - A) Multiple alleles
- B) Incomplete dominance
- C) Codominance
- D) Both A and C
- 57. Which of the following correctly describes the process of signal transduction for steroid hormones?
 - A) They bind to cell surface receptors and activate second messengers.
 - B) They diffuse through the plasma membrane and bind to intracellular receptors.
 - C) They are stored in vesicles until needed for release.
 - D) They are modified by the liver before entering the bloodstream.

58.	Cros	ssing over occurs durin	g which stag	ge of meiosis?								
	A)	Prophase I	B)	Metaphase II								
	C)	Anaphase I	D)	Telophase II								
59.	Kapj	pa particles in Paramed	cium are asso	ociated with:								
	A)	Mitochondrial inher	itance B)	Cytoplasmic inh	neritance							
	C)	Nuclear inheritance	D)	None of the abo	ve							
60.	Hon	nology modeling in bio	informatics	refers to:								
	A)	Constructing phylog	•									
	B)	Aligning DNA sequ		•								
	C)	Predicting RNA sec	-		_							
	D)	Predicting protein st	tructures bas	ed on known struc	tures of re	elated proteins						
61.	The purpose of microarrays in genomics and proteomics is to:											
	A)	Predict RNA structu										
	B)	simultaneously										
	C)	Predict protein tertia	ary structure	S								
	D)	Align DNA sequence	ees									
62.	The	algorithm which is cor	nmonly used	l for sequence alig	nment:							
	A)	PDB	B)	GenBank								
	C)	Swiss-PROT	D)	BLAST								
63.	Pino	cytosis is a form of:										
	A)	Osmosis	B)	Diffusion								
	C)	Active transport	D)	Bulk transport								
64.	The phase in cell cycle that shows greatest variation in duration:											
	A)	G1 phase B)	G2 phase	C) S phase	D)	None of these						
65.	In I	ECG the P-Q interval r	epresents:									
	A)	Auricular diastole	B)	Ventricular dias								
	C)	Auricular systole	D)	Ventricular syst	ole							
66.	In el	ectron transport chain,	terminal cy	tochrome donating	electrons	s to Oxygen is:						
	A)	a3 B)	c	C) a	D)	b						
67.	All t	he following amino ac	ids are esser	ntial except :								
	A)	Lysine	B)	Phenyl alanine								
	C)	Methionine	D)	Tyrosine								
68.	The	endocrine gland that b			:							
	A)	Thyroid B)	Thymus	C) Pineal	D)	Pituitary						

69.	Sphin A)	gosine is the Ceramide		one of all Cerebr			g except : Ganglioside	D)	Lecithin			
70.	Which A)	h organism i Physalia	s knowr B)	as jelly Tilapi		C)	Obelia	D)	Aurelia			
71.	Main A) B) C) D)	Perceive sound vibrations from outside Transmit sound waves to middle ear None of the above										
72.	Coral A) C)	reef of hors Barrier ree Fringing re	f	hape, no	ot encl B) D)	Atoll	ny island but h	naving	a central lagoon is:			
73.	Exam A)	ple for catao Anguilla	lromous B)	migrati Salmo		fishes : C)	Petromyzon	D)	All of these			
74.	The la	argest 'carbo Ocean	on sink' B)	on earth Fores		C)	Soil	D)	Deserts			
75.	Match the following List I with List II List I a. Kaziranga National Park b. Valmiki National Park c. Corbett National Park d. Ranthambhore National Park A) a-2, b-4, c-3, d-1 B)						List II 1. Uttarakhand 2. Bihar 3. Rajasthan 4. Assam					
76.	C) Which A) C)	a-4, b-2, c- h among the Carbon did Nitrogen d	e follow	ing is n o	D) ot a gr B) D)	eenhous	se gas? is oxide					
77.	Water A)	vascular sy Mollusca	stem is s	seen in: Porife		C)	Cnidaria	D)	Echinodermata			
78.	Assertion (A): Shark is a poikilothermic animal. Reason (R): It is not capable of regulating its body temperature according to the temperature of the environment.											
	A) Both A and R are true and R is not correct explanation of A B) A and R are true and R is the correct explanation of A C) A is true but R is false D) Both A and R are false											

79.	Pulse is usually detected at:												
	A)	Carotid arte		B)	Radia	al artery							
	C)	Branchial a	rtery	D)	Femo	oral artery							
80.	Ising	glass is obtaine	ed from	:									
	A)	Mollusca		B)	Fish								
	C)	Sponges		D)	Silkv	vorm cocoon							
81.	Sele	ct the correct of	order of	steps in PCR:									
	A)	Denaturation	n, Anno	ealing, Extensi	ion								
	B)												
	C)	,											
	D)	Annealing,	Extensi	ion, Denaturati	ion								
82.	Assertion (A): Wings of birds and bat are known as analogous structures												
	Reas	Reason (R) : Analogous structures are result of divergent evolution and developed due to adaptation to different needs.											
	A)	Both A and	R are t	rue and R is th	e corre	ect explanation	n of A						
	B)												
	C)	A is true by											
	D)	A is false,	R is tru	e									
83.	_	Anaphylaxis is: A) Hypervitaminosis											
	A)												
	B)	Hypersensitivity reaction											
	C)												
	D)	Both A & C											
84.		Pseudocoelom is characteristic of:											
	A)	Aschelmint		B)		atyhelminthes nordates							
	C)	Arthropods		D)	CI.	iordates							
85.	Biston betularia is associated with:												
	A)	GM crops		B)		ral Selection							
	C)	Zoonotic di	seases	D)	Cell	free cloning							
86.	Intri	nsic factor is s	secreted	by:									
	A)	Mast cells	B)	Parietal cells	s C)	Chief cells	D)	Pancreatic acini					
87.	Casp	ase is associa	ted with	ı:									
	A)	Apoptosis	B)	Gene clonin	g C)	ELISA	D)	Both B & C					
88.	Specialized proteins which allow individual polypeptide chains to fold into stable configuration:												
		Plasmins	B)	G- proteins	C)	Chaperons	D)	Cathensins					

89.	Inheritance of yellow coat colour in mice is an example of:										
	A)	Multiple alle	elism	B)	Leth	al genes					
	C)	Codominanc	ee	D)	Inco	mplete domina	ance				
90.	Bacte	erial conjugation	on was di	scovered by	/:						
	A)	Beadle and T	Γatum	B)	Grif	fith					
	C)	Lederberg an	nd Tatum	D)	Rob	ert Koch					
91.	In ele	ectron microsc	ope, the s	source of illu	umina	tion is:					
	A)	Mercury lan	np	B)	Xen	on arc lamp					
	C)	Laser beam		D)	Tung	gsten metal					
92.	stand		of the dat he coeffice	a set is 4. If	4 is ac	lded to every o	bserv	ns is 144 and the ation in the data set set? 40 %			
93.	Ligh	t gathering cap	acity of a	ın objective	lens i	n microscope	S				
	A)	Angular ape		B)	Nun	nerical aperture	2				
	C)	Resolving po	ower	D)	Coh	ler illumination	1				
94.	a. Db. Cc. Z	h the followin List I Diffuse placenta Cotyledonary p Conary placenta Leta discoidal p	a lacenta		1. Co	mates rse					
	A) C)	a -3, b -1, c a -1, b - 3, c		B) D)		b -2, c -1, d -4 b -4, c -1, d -2					
95.	Caec A)	ilians belong t Anura		Squamata	C)	Caudata	D)	Gymnophiona			
96.	Rept. A) C)	iles flourished Triassic Mesozoic	and attain	ned maximu B) D)	Carb	velopment dur poniferous ne of these	ing the	e era			
97.	The (A)	causative orgai Fungus		yme disease Bacteria	e is a: C)	Tick	D)	Helminth			
98.	_	process not inv Invagination		gastrulation ngression	: C)	Notogenesis	D)	Delamination			
99.		not associated Choanocytes		rifera : noebocytes	C)	Porocytes	D)	Plasmatocytes			

100.	Planu A)	la is the larva Obelia	l form (B)	of : Sea urc	hin	C)	Fasciola	D)	None of these		
101.	Whale A)	es comes undo Cetacea	er the C B)	Order: Sirenia		C)	Lagomorpha	D)	Rodentia		
102.	Ketos A) C)	sis is associate Diabetes ins Gastritis]	B) D)	Diabetes mellitus Pancreatitis					
103.	Glyco A) C)	oprotein lamin Immune res _l Tumour forr	onse]	n: B) D)		d coagulation recognition and	d adhes	ion		
104.	In euk A) C)	karyotes, beta Cytoplasm Endoplasmio]	place B) D)	Mite	ochondria h A & B				
105.	Most A) C)	of the sex-lind Y chromoso Nucleolus	_	nes are fo	X chi	romosome of the above					
106.	Glyce A) C)	eraldehyde is a Pentose suga Hexose suga	ar]	B) D)		ese sugar e sugar				
107.	Diagr A) C)	rammatic repr Idiogram Phylogenetic		I	aryoty 3) D)	type is : Polygram None of the above					
108.	The c A)	oncept of 'Sca Aristotle	ala Nat B)	urae' wa Linnae		osed l C)	•	D)	Pythagoras		
109.	The h A)	ormone invol Cortisol	ved in a	regulatio Melani		oiologi C)	cal rhythm is : Melatonin	D)	Epinephrin		
110.	The n A) C)	nicroscope em Fluorescent Phase contra	micros	cope	B)	Trans	nstained specin smission electr ning electron n	on mic	_		
111.	Which among the following are wrong about reptiles? 1. Skull is dicondylic 2. Abdominal ribs are not true ribs 3. Truncus arteriosus is present										
	A)	1 & 3 only	B)	1 & 2 onl	lv	C)	2 & 3 only	D) 1	1 2 & 3		

112.	- · · · · · · · · · · · · · · · · · · ·				examp B) D)	-				
113.	Paralo A)	ogous sequenc Insertion	es arise B)	due to Deleti		C)	Speciation	D)	Gene duplication	
114.	Select A) C)	, 11 6				n: Tailing Both A& C				
115.	Mutation in fibrillin gene causes sy A) Noonan B) Patau's					ndrome C)	Williams	D)	Marfan's	
116.	List I a. Tyj b. Ka c. Car	atch the following List I with List II List I Typhoid I. Bacteria Kala-azar Candidiasis Herpes simplex List II 1. Bacteria 2. Virus 3. Protozo 4. Fungus								
	A) C)	a-3, b-4, c-2, a-3, b-4, c-1,			B) D)	-	-3, c-2, d-4 -3, c-4, d-2			
117.	Major A) C)	portions of ju Pseudogenes Highly repet			sists of: B) D)	f: Heterochromatin Transposons				
118.	-	Methylation of DNA results in: a) Inactivation of genes B) b) Folding of proteins D)			/		ation of genes fect on genes			
119.	The specific control of transcription inv A) Zinc finger B) C) Heix-turn-heix D)					volves which motif ?: Leucine Zipper All the above				
120.	The an A) C)	The arm in tRNA which is capped with A) The acceptor arm B)					nce of CCA: arm ariable arm			