120 MINUTES

1.	Which A)	ch among the Wheat, oat, Wild bean,	, sugar l	oeat	B)	Pepp		_		
2.	1. X 2. N 3. R	tify the correct Yylose is a modelish test can ibose is a oligactose is a no	onosacc n be use go sacch	haride ed to tes naride		ohydrat	tes			
	A) C)	1, 2 &3 onl 2 & 3 only	у		B) D)		4 only 2 only			
3.	Imm A)	unoglobulin t IgA	hat med B)	liates hy IgD	yperse	nsitivit C)	y IgE	D)	IgH	
4.	Ident A) B) C) D)	tify the correct NK cells are immunity T cells orighted Helper T cells orighted Dendritic cells are selected.	e immu inate in ells atta	ine com blood ck the p	vessels athoge	s ens		umoural	and cellu	lar
5.	List a. Po b. L c. Po d. T	olytene chron ampbrush chr olycentric chr erminal kinet	nosome romosor romosor ochore	mes	2. T 3. B 4. N	Amphib elocent albiani on loca	rings alized kine	tochores		
	A) C)	a-3, b-4, c- a-1, b-2, c-3			B) D)		b-3, c-4, d- b-1, c-4, d-			
6.	Triso A) C)	omy 21 is: Turners syr Down's syr			B) D)		lu chat ards syndre	ome		
7.	'Pufi A)	f ball fungus' Agaricus	is: B)	Ustilag	go	C)	Morchel	la D)	Lycop	perdon

8.	 Identify the correct statements: Brown algae contain laminarin & mannitol ch1 a, ch1 c, B carotene - Bacillariophyceae Blue green algae contain cyanophycean starch Phycoerythrin is present in rhophyceae 									
	A) C)	1, 2& 3 only 3 & 4 only	B) D)	1 & 2 only 1, 2, 3 & 4						
9.	Func	etions of microtubules are:								
	A)	Cell division	B)	Construction of Flagella						
	C)	Ion transport	D)	All of these						
10.	'Cri A) B) C) D)	Deletion from chromosom	e 5							
11.	Prote A)	ein gives a brick red colour p Ninhydrin	recipita B)	Glyoxylic acid						
	C)	Millions	D)	Biuret						
12.	Tern A) C)	ninalization occurs in: Pachytene and Diakinesis Metaphase & Anaphase	,	Pachytene Diplotene						
13.	Dian A)	ninopimelic acid and teichoic Prokaryotes B) Eukar	acid b		Plastids					
14.	Albin A) B) C) D)	nism is: Lacking phenyl alanine hy Clamping of cells causes v Deficiency of an oxidase e Absence of tyrosinase	ascular	robstruction						
15.	Vitaı	min D3 is:								
- - ·	A)	Phylloquinone	B)	Retinol						
	Ć)	Alpha tocopherol	D)	Cholecalciferol						
16.	Coer	nzyme Q is present in:								
	A)	Plastids	B)	Mitochondria and micros	ome					
	C)	Nucleolus	D)	Only mitochondria						

17.	A) B) C) D)	Monophosp Pentose pho Warburg Di All of these	hate Slosphate	nunt pathwa	У	illed:				
18.	In Di A) B) C) D)	NA excision re Chromoson Altered DN Thymine din Core enzym	ne stand A segn mers w	d is reme nent of the ere rem	oved he DN	A is e	xcised and a n	ew pato	ch is synthesized	l
19.	1. I 2. (3. (ify the correct in Rivularia fi Carpospore is Chlorella repro Chlorococcale	lament absent oduces	is surro in Batra by non	achosp motile	ermun spores	1	elatino	us sheath	
	A)	1 only	B)	1 & 2 o	nly	C)	3 & 4 only	D)	1 & 3 only	
20.	In the A)	e ovary cavity Obturator	, poller B)		guide rgrids	-	Egg	D)	Chalaza	
21.	Minu A)	ite separable r Cilia	ounded B)	l outgro Sorali		f liche C)	n thallus Soredia	D)	Ascospore	
22.	An an A)	ngiosperm far Fabaceae Apocynacea	-	th synge	enesiou B) D)	Aste	er: raceae irbitaceae			
23.	Nucl A) C)	eosome – sole Kornberg ar Laderberg a	nd Tho	mas	as prop B) D)	Korr	y: iberg or Tatur tzsky	n		
24.	Head A)	l quarters of th Pune	ne Natio B)		odivers Delhi	-	thority is at: Munbai	D)	Chennai	
25.	A ho A)	loparasite: Viscum	B)	Raffle	esia	C)	Loranthus	D)	Santalum	
26.	The fA)	fruit syconium Hypanthodi Cyathium		eloped	from th B) D)	ne inflo Spac Umb	lix			

27.	If a DNA sample has a melting temperature of 84°C and a second sample has a melting temperature of 89°C, what will be your conclusion regarding the base composition of the two samples: A) First sample has high GC content B) First sample has low AT content C) Second sample has high GC content D) Second sample has low GC content
28.	Tissue culture media with thermolabile constitution is sterilized by: A) Chromatography B) Pasteurization C) Dry heat sterilization D) Ultra filteration
29.	If one strand of a DNA has a sequence of 5' GTA CTG AAC 3'. What is the sequence on its 3' 5' strand? A) GAU GUC UUG B) GAT GAC C) TTC CAT TTG GAC D) CAT GAC TTG
30.	Phenotypic ratio in recessive epistasis: A) 15:1 B) 9:3:4 C) 12:4 D) 9:3:3:1
31.	Classical Smog is: A) Condensation of CO ₂ B) Smog formed by SO ₂ C) Particulate matter suspended in air D) Aggregation of NOx and VOCs
32.	The term genomics was coined by: A) T H Roderick B) A Flemming C) F Sanger D) H Winkler
33.	Reciprocal translocation is: A) A barr body B) A Short chromosome C) Robertsonian translocation D) An Isochromosome
34.	Technique used for separation of immunoglobulins is: A) Paper chromatography B) SDS PAGE C) Affinity chromatography D) Gas chromatography
35.	Advantage of microarrays is A) Assay provides qualitative data B) Single color is used in DNA microarray C) Only certain genes can be analyzed in one test D) It is very sensitive and rapid and allows for the direct comparison of expression

36.	Albinism in plants is caused by: A) Duplicate recessive genes B) Recessive epistatic gene								
		C) Dominant complementary genes							
	D)	Recessive le			Series				
37.	Speci	ype was not d	esignat	ed:					ıral type when
	A)	Holotype	B)	Isotyp	e	C)	Lectotype	D)	Paratype
38.	The p A) C)	roduct of assimila Net assimila Assimilation	tion	n and n	et prod B) D)	Explo	efficiency is itation production	effi	ciency.
39.	Diplo A)	id organism w Monosomy		extra cl Nullis		some is	s: Trisomy	D)	Monoploidy
40.	Identi A) B) C) D)	fy the correct Malvaceae g Bulbophyllu <i>Hopea acum</i> In Solanacea	enerall m belor inata b	ent: y have ngs to l elongs	ovules Family to Fam	Orchic nily Bra		entation	
41.	Numb A)	per of nucleoti 17	des in y B)	yeast al 67	anyl tF	RNA: C)	77	D)	88
42.	A nor A) C)	n radioactive la ³² P Palindromes		ed in m	olecula B) D)	Digox	e: xigenin iidine dimer		
43.	DDB. A) C)	J is: Biological da Protein struc			B) D)		in sequence d ple sequence		
44.	A retr A) C)	o virus is: Herpes virus Hepatitis B v			B) D)	HTLV Aden	V-1 ovirus		
45.	Identi 1. 2. 3.	-	hu, Cui umbell	rcus sat atum, I	ndigof	era tinc	a tinctoria toria, Cumin Cinnamomum	-	
	A)	1 only	B)	2 only	7	C)	3 only	D)	1 & 3 only

46.	Match the following (bacterial features) in List 1 with (corresponding descriptions / roles) in List 2:							
	List 1		List 2)				
	a. F-p				l gene transfer by bacteriophages			
	b. Fla				tructures used for locomotion			
		nsformation		•	foreign DNA from the environment			
		nsduction	_		involved in bacterial conjugation			
	A) C)	a-4, b-1, c-3, a-4, b-2, c-3,		/	a-2, b-4, c-1, d-3 a-3, b-1, c-4, d-2			
47.	What A) B) C) D)	They allow b They enable They coordin	acteria to sen bacteria to rec ate gene expr	sing molecules play in bacterial biofilms? It to sense nutrient levels in their environment a to recognize and kill neighbouring bacteria ne expression in response to population density njugation process in nearby cells				
48.	 Which of the following best describes the lysogenic cycle of bacteriophages? A) The phage DNA is immediately replicated and leads to cell lysis B) The phage DNA is integrated into the host genome and remains dormant C) The phage uses reverse transcriptase to insert its RNA into the host D) The phage DNA does not enter the host genome but still kills the host cell 							
49.	A) La B) Ha C) Re	ds differ from the control of the co	oat inded DNA as nal cells only	s geneti				
50.	Which	h type of life c	vele is charac	teristic	of the green algae, Ulva (Chlorophyceae)?			
50.			yere is charac					
	C)	Haplodiplont		D)	None of these			
51.	List 1 a. Psil b. Lyc c. Sph	n the following lopsida copsida nenopsida ropsida	List 2 1. Microphyl 2. Primitive 3. Jointed ste	llous le pterydo ems wit	List 1 with (general characteristics) in List 2: aves, sporangia borne in cones ophytes with dichotomous branching th whorls of microphylls ous leaves (fronds)			
	A)	a-2, b-1, c-3,	d-4	B)	a-1, b-2, c-4, d-3			
	C)			/	a-3, b-4, c-1, d-2			
52.	of cyc A)	ads but showe Ginkgoales		f flowe B)	Bennettitales			
	C)	Cordaitales		D)	Coniferales			

53.	The v A)	vood which is non-functiona Heart wood B) Sap w	ıl in wa vood				olour: Hard wood
54.	used to List 1 a. PA b. Su c. Co	th the following (staining me to localize) in List 2 AS (Periodic Acid-Schiff) Idan Black Domassie Brilliant Blue Dluidine Blue	Lis 1. Pro 2. Lij 3. Ca	st 2 oteins	drates	ar com	ponents they are
	A) C)		/	-	b-3, c-2, d-1		
55.	Whic A) B) C) D)	h among the following is Co FAA (Formalin-Acetic-Al Carnoy's fluid Flemming's fluid Glutaraldehyde		ly used	d for routine p	olant tis	sue fixation?
56.	A sp A) B) C) D)	sectioning of frozen tissue Sectioning for electron mic Sectioning for electron mic General thin sectioning for Sectioning of large and ha	es croscop r light 1	oy nicroso	сору		
57.	Apos A) B) C) D)	Formation of an embryo we Development of an embryo Development of an embryo Development of an embryo Formation of a gametophy	vithout embryc o from	without without without an unf	out meiosis ertilized egg	ithout 1	neiosis
58.	s A) C)	signalling pathway is activat Auxin sign Phytochrome	ed by to B) D)	Ethyl		nt in pla	ants.
59.	The s A) B) C) D)	ignificance of the patch clar It measures stomatal condu It investigates ion channel It quantifies photosynthetic It analyses hormone levels	uctance activity c effici	y. ency.	in plant physi	ology r	research is:
60.		ponse to chilling stress, which gulated in plants? Heat shock proteins Desaturase enzymes	ch of the B) D)	Chap	owing protein eronins xygenases	s is kno	own to be

61.	The type of plant growth which is primarily regulated by the balance between auxins and cytokinins:									
	A)	Apical dominance		B)	Lateral root formation					
	C)	Leaf senescence		D)	Fruit development					
62.	The primary function of the enzyme GOGAT in nitrogen metabolism is to:									
	A)									
	B)	Reduce nitrite to ammonium Incorporate ammonium into organic compounds								
	C) D)	Produce glutamate		_	<u>-</u>					
63.	What role does calcium play in plant cells?									
	A)	•								
	B)	It mediates signal to	ransduc	tion pa	athways					
	C)	- · · · · · · · · · · · · · · · · · · ·								
	D)	All of these								
64.	In the context of the soil-plant-atmosphere continuum, what primarily drives water movement in plants?									
		-		D)	Tananinatian mull					
	A)	Capillarity		B)	Transpiration pull Osmotic pressure					
	C)	Active transport		D)	Osmotic pressure					
65.	The aquaporins in plants:									
	A)									
	B)	Facilitate the passive movement of water across membranes								
	C)	Are involved in the transport of ions and small solutes								
	D)	D) Generate ATP through photophosphorylation								
66.	Match the following (stages of flowering) in List 1 with (mechanisms) in List 2:									
	List 1	oral induction	List 2		ment of floral structures from meristematic					
	a. 110	oral madellon	tiss	•	ment of florar structures from mensionalic					
	b. Fl	loral evocation			n from vegetative to flowering stage					
		lorphogenesis			n of flowering genes in response to					
		1 8			iental cues					
	d. Flo	oral organ identity			ation of the type and arrangement of floral					
			org	gans						
	A)	a-3, b-2, c-1, d-4		B)	a-2, b-3, c-4, d-1					
	C)	a-4, b-1, c-2, d-3		D)	a-3, b-1, c-2, d-4					
67.	Move		ough sp	ecific	channels or carriers is:					
	A)	Passive transport		B)	Facilitated diffusion					
	C)	Active transport		D)	Apparent free space					

68.	List 1 List 2:								
	a. Phytochromes		phototropism and stomatal opening						
	b. Cryptochromes		d/far-red light to control flowering						
	c. Phototropins		gainst photodamage						
	d. Carotenoids	4. Regulate	blue light responses						
	A) a-2, b-4, c-1, d-3	B)	a-3, b-1, c-4, d-2						
	C) a-2, b-1, c-3, d-4	D)	a-2, b-4, c-3, d-1						
69.	Match the following (plan List I	t hormones) i List I	hormones) in List 1 with (roles) in List 2:						
	a. Auxins		bolting and reverse dwarfism						
	b. Gibberellins		rowth and induce seed dormancy						
	c. Cytokinins		e elongation and flowering						
	d. Abscisic acid	4. Regulate	e lateral bud growth and leaf senescence						
	A) a-3, b-1, c-4, d-2	,	a-1, b-3, c-2, d-4						
	C) a-2, b-4, c-1, d-3	D)	a-4, b-2, c-3, d-1						
70.	The statistical test which is groups:	s most approp	riate for comparing means of more than two						
	A) Chi-square test	B)							
	C) Regression analysis	D)	Analysis of variance (ANOVA)						
71.			using a monochromator is to:						
	A) Detect light intensit	•	·						
	B) Filter the emitted li	-	tic wavelengths						
	C) Amplify the sampleD) Measure the mass of	-							
	b) Weasure the mass c	of molecules							
72.	The microscope technique A) Fluorescence micro		alizing live cells without staining:						
	B) Scanning electron r		EM)						
	C) Phase-contrast micro		2111)						
	D) Transmission electr	* •	y (TEM)						
73.	The parameter which mean	sures the spon	taneity of a biochemical reaction:						
	A) Enthalpy (ΔH)	B)	Free energy (ΔG)						
	C) Entropy (ΔS)	D)	Activation energy (Ea)						
74.	The enzyme responsible for and oxygen:	or catalysing t	he breakdown of hydrogen peroxide into wat	er					
	A) Superoxide dismuta	ise B)	Peroxidase						
	C) Catalase	D)	Glutathione reductase						

75.	The vitamins which acts as a coenzyme for carboxylation reactions:									
	A)	Vitamin B1 (Thiamine)								
	B)	Vitamin B7 (Biotin)								
	C)	Vitamin B12 (Cobalamin)								
	D)	Vitamin C (Ascorbic acid	*							
76.	In an	n enzyme catalysed reaction	. a low	Km value indicate high:						
, 01	A)	Substrate affinity	B)	Reaction rate						
	C)	Turnover number	D)	Product formation						
77.	The purine which is the primary precursor in purine nucleotide biosynthesis:									
, , .	A)	Guanine	B)	Hypoxanthine						
	C)	Xanthine	D)	Inosine monophosphate (IMP)						
78.	Whic	ch lipid category does phos	phatidy	Icholine belong to?						
,	A)	Glycolipids	B)	Sphingolipids						
	C)	Glycerophospholipids	D)	Sterols						
79.	The	unusual amino acid which i	s typica	ally found in collagen:						
, , , .	A)	Selenocysteine	B)	Hydroxyproline						
	C)	γ-carboxyglutamate	D)	N-formyl methionine						
80.	The Ramachandran plot primarily provides information about which of the following									
		ects of protein structure?								
	A)	Protein folding pathway								
	B)	Tertiary structure formation								
	C)									
	D)	Amino acid side chain in	teractio	ns						
81.	The pair which correctly represents a buffer system in living organisms:									
	A)	Sodium bicarbonate and	hydrocł	nloric acid						
	B)	Ammonium and ammoni	um chlo	oride						
	C)	,								
	D)	,								
82.	The	method of vegetative propa	gation i	nvolves the use of rooted stem cutting:						
	A)	Layering B) Grat	fting	C) Budding D) Cutting						
83.	The	method commonly used to	produce	e monoclonal antibodies:						
	A)	Immunoprecipitation	B)	ELISA						
	C)	Hybridoma technology	D)	Western blot						
84.			mplex ((MHC) class I molecules present antigens to						
	whic	th type of immune cell?								
	A)	T helper cells	B)	Cytotoxic T cells						
	C)	B cells	D)	Natural killer cells						

85.		n of the following is not a rebrium in a population?	quiren	ment for maintaining Hardy-Weinberg				
	A)	No mutations	B)	Large population size				
	C)	Non-random mating	D)	No migration				
86.		peron model which illustrate the gene expression:	es nega	gative control and involves attenuation to				
	A)	Lac operon	B)	Trp operon				
	C)	Arabinose operon	D)	SOS response operon				
87.	What A) B) C) D)		for rib transci	ibosomal subunits				
		codon						
88.		s induced by UV light:	h is pri	rimarily involved in correcting pyrimidine				
	A)	Mismatch repair	B)	Base excision repair				
	C)	Nucleotide excision repair	D)	Direct repair				
89.		A replication, the enzyme rearyotes is:	espons	sible for resolving the end replication problem	n			
	A)	DNA helicase	B)	Topoisomerase				
	C)	Telomerase	D)	\overrightarrow{DNA} polymerase δ				
90.	In cell signalling, G-protein coupled receptors (GPCRs) primarily activate which secondary messenger molecule?							
	A)	cAMP	B)	Calcium ions				
	C)	Phosphoinositide	D)	DAG (diacylglycerol)				
91.		istone modification which is aryotic cells:	s prima	arily associated with transcriptional activation	n			
	A)	Histone acetylation	B)	Histone methylation (lysine 9)				
	C)	Histone ubiquitination	D)	Histone phosphorylation				
92.		g apoptosis, which of the foliage the apoptotic cascade?	llowing	ng is a key effector molecule responsible for				
	A)	Caspases B) Bax		C) p53 D) Cytochrome C				
93.	The primitosi		gulatio	on of spindle assembly checkpoints during				
	A)	Cohesin	B)	Cyclin B				
	C)	Separase	Ď)	APC/C (Anaphase Promoting Complex)				

94.	A key A) B) C) D)	structural feature of the euk Presence of peptidoglycan Asymmetrical distribution Double-stranded RNA inte Symmetrical arrangement	of lipic gration	l s		
95.	Which A) C)	of the following is not a ch Species richness Species evenness	naracter B) D)	ristic of alpha diversity? Genetic variation within a population Community diversity within a habitat		
96.		nternational treaty which aim ls through trade regulations: Kyoto Protocol CITES	_	Bonn Convention Ramsar Convention		
97.	 A method used in phytosociology for classifying plant communities: A) Gleason's Individualistic Concept B) Clementsian Concept of Climax C) Island Biogeography Theory D) Raunkiaer's Life Form Classification 					
98.	List2: List 1 a. Bas b. Nuc c. Mis		List 2 1. Fixe 2. Cor 3. Fixe	es bulky, helix-distorting lesions rects single-base mutations es incorrect base pairing verses chemical changes in bases		
	A) C)	a-1, b-2, c-3, d-4 a-2, b-1, c-3, d-4	B) D)	a-1, b-3, c-4, d-2 a-2, b-3, c-1, d-4		
99.	signal List 1 a. G-p b. Tyr c. Ion	the following (Signal Transling molecules) in List 2: crotein coupled receptors (Giosine kinase receptors channel linked receptors acellular receptors		List 2 1. Steroid hormones 2. Growth factors 3. Neurotransmitters 4. Secondary messengers		
	A) C)	a-4, b-3, c-2, d-1 a-4, b-2, c-3, d-1	/	a-1, b-3, c-4, d-2 a-2, b-4, c-3, d-1		

94.

100.	Match the following (Genetic Mutations) in List 1 with (corresponding description List 2:								
	List 1				List 2				
	a. Missense mutation 1. Introduce				es a premature stop codon				
					nge in the amino acid sequence				
				_	ers the amino acid sequence				
	d. Sile	ent mutation	4. Caused by insertion or deletion of nucleotides						
	4.5	4.1.0 1.1.2		D)	2.1.1.4.12				
	,	a-4, b-2, c-1, d-3		,	a-3, b-1, c-4, d-2				
	C)	a-2, b-3, c-1, d-4		D)	a-3, b-4, c-1, d-2				
101.	Match the following (Cell Signalling Molecules) in List 1 with (receptors) in List 2 List 1 List 2								
		etylcholine			1. G-protein coupled receptors				
	b. Inst	-			2. Ligand-gated ion channels				
			· (EGE)		3. Tyrosine kinase receptors				
	c. Epidermal growth factor (EGF) d. Cortisol				4. Intracellular receptors				
	u. Cotusoi				7. miracentilai receptors				
	A)	a-2, b-3, c-1, d-4		B)	a-3, b-2, c-1, d-4				
	C)	a-1, b-2, c-4, d-3		D)	a-2, b-1, c-3, d-4				
102.	Match the following (Chromatins) in List 1 with(characteristics) in List 2:								
	List 1 List 2				agaly maakad transarintianally inactive				
					 Densely packed, transcriptionally inactive Loosely packed, transcriptionally active 				
					3. Always inactive and found at centromeres				
	c. Constitutive heterochromatin d. Facultative heterochromatin			4. Can switch between active and inactive states					
	u. rac	unanve neterochrom	aum	4. Can switch between active and mactive states					
	A)	a-2, b-3, c-1, d-4		B)	a-1, b-3, c-4, d-2				
	C) a-1, b-2, c-4, d-3			D)	a-2, b-1, c-3, d-4				
1.02									
103.	Match the following (ecological concepts) in List 1 with (examples) in List 2: List 1 List 2								
		ystone Species		otters	in kelp forests				
	· · · · · · · · · · · · · · · · · · ·				ssels in North America				
	c. Endangered Species 3. Amur leop								
				_	dicating air quality				
	u. IIIu	icator species	4. LIC	nens m	dicating an quanty				
	A)	a-1, b-2, c-3, d-4		B)	a-2, b-1, c-4, d-3				
	C)	a-3, b-4, c-1, d-2		D)	a-1, b-3, c-2, d-4				
104.									
	plants	Flectroporation		B)	A grobacterium-mediated transformation				

- A) C)
- Agrobacterium-mediated transformation RNAi technology B)
- Electroporation
 Gene gun (biolistics)
- D)

105.	In the A) B) C) D)	Process by which microorganisms alter the chemical structure of compounds Genetic modification of microorganisms for industrial use					
106.	The dA)	atabase specifica EMBL SWISS-PROT	ılly designe	ed for p B) D)	rotein sequence data: GENBANK DDBJ		
107.	What A) B) C) D)	Aligns protein structures Identifies homologous sequences Analyses metabolic pathways Constructs phylogenetic trees					
108.	Which A) C)	h of the following Global alignme Phylogenetic al	nt	B)	sequence alignment analysis? Local alignment Pair wise analysis		
109.	In bio A) B) C) D)	The process of sequencing DNA The identification of functional elements in the genome The assembly of genomic data into databases The comparison of genomes from different organisms					
110.	 The primary mechanism of systemic acquired resistance (SAR) in plants is: A) Localized cell death at the infection site B) Activation of defense genes throughout the plant C) Production of phytoalexins D) Mechanical barrier formation 						
111.	Match the following (genetic markers) in List 1 with (descriptions) in List 2: List 1 List 2 a. RFLP 1. Variation in the number of repeats of a sequence b. SSR 2. Variation in DNA sequence length c. SNP 3. Single nucleotide change d. AFLP 4. Amplified fragment length polymorphism A) a-2, b-1, c-3, d-4 B) a-4, b-1, c-3, d-2 C) a-1, b-4, c-3, d-2 D) a-4, b-3, c-1, d-2				of repeats of a sequence ence length ee gth polymorphism a-4, b-1, c-3, d-2		

112.	 2. Match the following (plant disea List1 a. False smut of Paddy b. Powdery mildew of Rubber c. Coffee rust d. Yellow vein mosaic 			List 2 1. Fur 2. Fur 3. Fur	List 1 with (causal organisms) in List 2: List 2 1. Fungus (Ustilaginales) 2. Fungus (Erysiphales) 3. Fungus (Hemileia vastatrix) 4. Virus (geminivirus)					
	A) C)	a-1, b-2, c-3 a-3, b-2, c-1	•	,	_	b-1, c-4, d-3 b-3, c-1, d-2				
113.	Match the following (biotechnoloc List1 a. Bt cotton b. Golden rice c. Flavr Savr tomato d. Herbicide-resistant soybeans			List 2 1. Pes 2. Vit 3. De	ogical applications) in List 1 with (uses) in List 2: List 2 1. Pest-resistant crop 2. Vitamin A enrichment 3. Delayed ripening 4. Tolerance to herbicides					
	/	a-3, b-2, c-1 a-2, b-1, c-4	•	,		b-3, c-2, d-1 b-2, c-3, d-4				
114.	Match the following (components (functions) in List 2: List 1 a. Systemic acquired resistance b. Induced systemic resistance c. Phytoalexins d. Mechanical barriers		List 2 e 1. Lo 2. Lo 3. Co	List 2 1. Localized defense against pathogens 2. Long-term response to infection 3. Compounds that inhibit pathogen growth 4. Physical defense against pests						
	A) C)	a-2, b-1, c-3 a-3, b-4, c-2	•	,	-	b-2, c-4, d-3 b-3, c-1, d-4				
115.	 Which among the following statements are true related to stains in micro technique? Acridine Orange is a synthetic dye belonging to the triarylmethane class, used in staining bacterial endospores. Eosin is an acidic dye composed of brominated fluorescein, stains cytoplasm and extracellular structures in tissues, imparting a pink or red colour. It is often used as a counterstain in combination with hematoxylin in H & E staining. Hematoxylin is a basic dye derived from the heartwood of certain trees and undergoes oxidation to form hematein, staining nuclei blue or purple. Malachite Green is used in fluorescence microscopy for vital staining of live cells. 					used sm often				
	A)	2 & 3 only	B) 1 &	& 2 only	C)	1 & 3 only	D)	1, 2 & 3 onl	у	

116.	Regarding photorespiration, which statements are accurate? 1. It occurs when oxygen levels are high and carbon dioxide levels are low 2. It results in the production of glycolate & hydroxy pyruvate 3. RuBisCO can fix both carbon dioxide and oxygen 4. Photorespiration occur in mitochondria						
	A) C)	1 & 3 only 2, 3 & 4 only		1, 2 & 4 only 1, 3 & 4 only			
117.	List 1 a. Sign b. Sign c. Sec	n the following (signal transonal perception nal amplification ond messengers nal transduction pathways	yolves molecules like Ca ²⁺ and cAMP creases the strength of the signal within the cell tial detection of the signal by receptors ries of biochemical reactions leading to a lular response				
	A) C)	a-3, b-2, c-1, d-4 a-2, b-3, c-4, d-1		a-2, b-4, c-1, d-3 a-3, b-1, c-2, d-4			
118.		unkiaer's system of plant cla at or near the ground? Phanerophyte Chamaephyte	ssificat B) D)	tion, which form of plant has its perennating Hemicryptophyte Therophyte			
119.		Random associations of species Always in equilibrium					
120.	The concept of ecads and ecotypes is most relevant to: A) Genetic diversity P) Foogystem stability						
	A) C)	Genetic diversity Ecological succession	B) D)	Ecosystem stability Habitat conservation			
