

भारत सरकार / Government of India अंतरिक्ष विभाग / Department of Space विक्रम साराभाई अंतरिक्ष केंद्र / VIKRAM SARABHAI SPACE CENTRE

तिरुवनंतपुरुम / Thiruvananthapuram - 695 022

तकनीकी सहायक (विद्युत इंजीनीयरी, विज्ञा.सं.291) के पद के चयन हेतु लिखित परीक्षा
WRITTEN TEST FOR SELECTION TO THE POST OF TECHNICAL ASSISTANT (ELECTRICAL ENGG., ADVT. NO. 291)
पद सं.1285 / Post No 1285

सर्वाधिक अंक/Maximum Marks : 320 अभ्यार्थी का नाम/Name of the candidate :	ाताथ/Date: 28.08.2016 समय/Time. 2 घंटे/ hours अनुक्रमांक सं/Roll no.	
	v an molecule to allegate significa-	
Marie Carlo and and an area and a second		

अभ्यर्थियों के लिए अनुदेश /Instructions to the Candidates

 आपके द्वारा वेब आवेदन में प्रस्तुत किए गए ऑन-लाइन डेटा के आधार पर आपको लिखित परीक्षा के लिए आमंत्रित किया गया है। <u>यदि आपने वेब में किसी सूचना की गलत प्रविष्टि की है या विज्ञापन के अनुसार अपेक्षित योग्यता</u> नहीं रखते हैं तो आपकी अभ्यर्थिता अस्वीकृत कर दी जाएगी।

You have been called for the written test based on the online data furnished by you in the web application. If you have wrongly entered in the web any information or you do not possess the required qualification as per our advertisement, your candidature will be rejected.

- 2. परीक्षा हॉल में निरीक्षक की उपस्थिति में ही आपको हॉल-टिकट पर हस्ताक्षर करना चाहिए। You should sign the hall ticket only in the presence of the Invigilator in the examination hall.
- 3. प्रश्न-पत्र, 80 प्रश्नों से युक्त प्रश्न-पुस्तिका के रूप में है और परीक्षा की अवधि 02 घंटे है ।
 The Question paper is in the form of Question Booklet with 80 questions and the duration of the test is 02 hours.
- 4. प्रश्नों के उत्तर देने के लिए दूसरी प्रति सहित अलग ओएमआर उत्तर-पुस्तिका दी जाएगी। A separate OMR answer sheet with duplicate will be provided to mark the answer options.
- 5. प्रत्येक प्रश्न केलिए 04 अंक होंगे और प्रत्येक गलत उत्तर केलिए एक अंक काटा जाएगा । Each question carries 04 marks and one mark will be deducted for each wrong answer.

- 6. <u>ऊपर दाएँ कोने में मुद्रित प्रश्न-पुस्तिका श्रेणी कोड (ए/बी/सी/डी/ई), ओएमआर उत्तर पुस्तिका पर निर्दिष्ट स्थान पर लिखना चाहिए।</u>
 - Question booklet series code (A/B/C/D/E) printed on the right hand top corner should be written in the OMR answer sheet in the place provided.
- 7. प्रश्न-पुस्तिका में आपका नाम तथा अनुक्रमांक सही लिखें। Enter your Name and Roll Number correctly in the question booklet.
- 8. ओएमआर उत्तर-पुस्तिका में सभी प्रविष्टियां **नीली/काली स्याही के बॉल पाइंट पेन** से ही की जानी चाहिए। All entries in the OMR answer sheet should be with **blue/black ball point pen** only.
- 9. चार विकल्पों सहित वस्तुनिष्ठ प्रकार के प्रश्न होंगे जिनमें से सिर्फ एक असंदिग्घ रूप से सही होगा । The questions will be objective type with four options out of which only one will be unambiguously correct.
- 10. आपको, उत्तर-पुस्तिका में दिए गए अनुदेशों के अनुसार, नीली/काली स्याही के बॉल पाइंट पेन से ओएमआर उत्तर-पुस्तिका में संबंधित ऑवल को अंकित कर सही उत्तर का चयन करना है। You have to select the right answer by marking the corresponding oval on the OMR answer sheet by blue/black ball point pen.
- एक प्रश्न के लिए अनेक उत्तर गलत माना जाएगा ।
 Multiple answers for a question will be regarded as wrong answer.

inside the written test hall.

D

- 12. <u>लिखित परीक्षा चलनेवाले हॉल के अंदर कंप्यूटर, कालकुलेटर, मोबाइल फोन तथा अन्य इलेक्ट्रॉनिक जुगतें, पाठ्य-पुस्तकें, नोट आदि लाने की अनुमति नहीं दी जाएगी।</u>

 <u>Computers, calculators, mobile phones and other electronic gadgets, text books, notes etc., will not be allowed</u>
- 13. परीक्षा पूर्ण होने पर, ओएमआर उत्तर-पुस्तिका को ऊपर के छेद्रन चिह्न से फार्डे और मूल ओएमआर उत्तर-पुस्तिका निरीक्षक को सौंपे तथा दूसरी प्रति आपके पास रखें।

 On completion of the test, tear the OMR answer sheet along the perforation mark at the top and hand over the original OMR answer sheet to the invigilator and retain the duplicate copy with you.
- प्रश्न-पुस्तिका अभ्यर्थी अपने पास रख सकते हैं।
 The question booklet can be retained by the candidates.
- 15. परीक्षा के प्रथम घंटे के दौरान अभ्यर्थियों को परीक्षा हॉल छोड़ने की अनुमति नहीं है। Candidates are not permitted to leave the examination hall during the first hour of the examination.

तकनीकी सहायक - विद्युत (1285) Technical Assistant - Electrical (1285)

सम	ान वो	ल्टता ट	दर के	200W	एवं	860W	की	बत्ती	के	बीच	200W	बत्ती	का	प्रतिरोध
-		J												
Bet		200 W ar		lamps	of the	same v	oltag	ge rating	g, the	resist	ance of	200 W	lamp	will be
(a)	उच्च	तर/High	er											
(b)	समा	न/Same												
(c)	आपू	र्ति की प्र	कृति के	अनुसार	बदल	ता/Var	ies w	ith natı	ire of	suppl	y			
(d)	_	नतर/Lov	•	3										
										Sin.	201			
	•	संधारित्र					5 —	्वारा वि	देया उ	नाता है	है।			
1 he	energ	y of a cha	.—.			9.0								
(a)	$\frac{Q}{2V}$		(b)	$\frac{2V}{O}$		(c)	$\frac{QV}{2}$		((d) $\frac{2}{2}$	$\frac{v}{o}$		
				•				-			-	Y		
एक	पी -पं	ल मशी	न के लि	ए, विद्	युत ए	वं यांत्रि	क डि	ग्रियों वे	के बीच	व के	संबंध व	ने		
द्वा	रा दिय	ा जाता है	5											¥.
For	a P-po	le machi	ne, the r	elation b	etwee	en elect	rical	and me	chan	ical de	egrees is	given l	by	
(a)	$\theta_{ m elec}$ =	$=\frac{2}{P}\theta_{\text{mech}}$	(b)	$\theta_{\rm elec}$ =	$=\frac{4}{P}\theta_{\rm m}$	nech (c)	$\theta_{\text{elec}} = I$	$\theta_{ m mech}$	ı ((d) θ_{el}	$ec = \frac{P}{2} \theta_n$	nech	
P	गोल र्व	ने संख्य	ा तथा	N rpm	की	गति	से र	ाकत ए	क ब	ीसी	जनित्र	में चंब	कीय	विपर्यय
						(0)		. · ·				3	-	
In a		nerator l		number	of po	les and	spee	d of N	rpm,	the fro	equency	of mag	netic	
	PN		(L)	PN		(-		PN		,	1) PI	,		
(a)	60		(0)	120		(6	;)	240		(d) $\frac{PR}{2}$	-		
डीसी	शंट	मोटर 20	0 वो. में	संभरण	ा करत	ता है। व	यदि .	आर्मेचर	धार	T 20 A	A तथा	आर्मेचर	का	प्रतिरोध
		विकसि												
ΑD	C shu	nt motor	runs at	200 V	supp	ly, if th	ne ar				20 A a	ınd resi	stance	e of the
arm	ature is	0.5Ω , th	ne back e	e.m.f dev	velope	ed will l	oe .							

(a) 210 वो./V

(c) 190 वो./V

(b) 200 वो./V

(d) 180 वो./V

		लक को —— onductor have e						-	नकता	होती है।		
(a)	1	0-5	(b)	10 ⁻³		(c)	10 ⁴		(d)	10		
								ž				
		50 Hz के एक 3 ase 3 element er						~	_			— है।
(a)	20	00 V	(b)	240 V		(c)	415 V		(d)	440 V		
					° E							
		r.m.s मान — a.s value of A.C			– के सम	ान है।						
(a)	0.	.637 का अधिक	तम म	ान/0.637	of max.	value						
(b)	0.	707 का अधिक	तम म	ान/0.707	of max.	value						
(c)	1.	414 का अधिक	तम म	ान/1.414	of max.	value						
(d)	31	धिकतम मान/]	The ma	aximum	value							
प्रति	ने चर	ण प्रति पोल वृं	नडिलय	ों की संव	<u> ज्या</u> ——			- है।			1.	
		umber of coils p						-				
(a)	and a second	ntal no.of coils No.of phases				(b)		tal no.of o hases × No		es		
(c)	<u>T</u>	otal no.of phases No.of coils				(d)	Management of the Control of the Con	nases × no cal no of c	The second secon	<u>es</u>		
A 1	ap w	वूंड डी सी मशी ——— की round DC mach the machine gen	वोल्टत ine ha	ा उत्पन्न s 400 co	करती है। nductors							
(a)		00 V	(b)	200 V		(c)	400 V		(d)	800 V		

11	।. एक कप	प्लन टर्बाइन ———— है।
	A Kapl	an turbine is
	(a) 31	गंतरिक प्रवाह आवेगी टर्बाइन/Inward flow impulse turbine
	(b) ब	ाह्य प्रवाह प्रतिघाती टर्बाइन/Outward flow reactive turbine
	(c) 3	च्च शीर्ष मिश्रित प्रवाह टर्बाइन/A high head mixed flow turbine
	(d)	ोम्न शीर्ष अक्षीय प्रवाह टर्बाइन/Low head axial flow turbine
12.		मी. लंबाई की एक केबिल का विद्युत रोधन प्रतिरोध 1 MΩ है तथा उसी केबिल की
	100 कि.	मी. लंबाई की विद्युत रोधन प्रतिरोध ———होगी।
	The insucable the	ilation resistance of a cable of length 10 km is 1 M Ω and for a length of 100 km of the same e insulation resistance will be
	(a) 1 M	$M\Omega$ (b) 10 $M\Omega$ (c) 0.1 $M\Omega$ (d) 0.01 $M\Omega$
13.	एक आर	एलसी श्रेणी परिपथ ———— पर मुख्यतः प्रेरणिक रहता है।
		series circuit remains predominantly inductive
	(a) अन्	नुनाद आवृत्ति पर/At resonance frequency
	(b) अन्	नाद आवृत्ति के नीचे/Below resonance frequency
	(c) अनु	नाद आवृत्ति के ऊपर/Above resonance frequency
	(d) निम	न्न अर्ध शक्ति अनुनाद पर/At lower half power frequency
14.	सामान्यत	ः एक प्रोत्कर्ष को 600कि. मी. तक शीर्षस्थ संचरण रेखा द्वारा जाने में ——————
	समय लग	
	The time	taken for a surge to travel 600 km long over head transmission line is typically
	(a) 6 से	
d.		tarija ar amazam ultaran ase i i je i je i je

15.	चालू स्थिति में 3-कला प्रेरण मोटर का अधिकतम टॉर्क — है।	
	The maximum torque of a 3-phase induction motor under running conditions is	T
	(a) संभरण वोल्टता के प्रतिलोमतः आनुपातिक/Inversely proportional to supply voltage	
	(b) स्टैंड स्टिल में रोटर प्रतिघात के प्रतिलोमतः आनुपातिक/Inversely proportional reactance at stand still	to rotor
	(c) रोटर प्रतिरोध के पूर्णतः आनुपातिक/Directly proportional to rotor resistance	
	(d) उपर्युक्त में से कोई नहीं/None of the above	
16.	चल कुंड़ली यंत्र में, अवमंदन टॉर्क — द्वारा विकसित होता है। In a moving coil instrument, the damping torque is developed by	
	(a) वायु घर्षण/Air-friction (b) भंवर धारा/Eddy-current	
	(c) गुरुत्व घर्षण/Gravity-friction (d) तरल घर्षण/Fluid-friction	
	en Herrigani Retain 100 de la reconstrucción de la	
17.	एक घर में 4kW संबद्ध भार हैं तथा इसमें एकल कला संभरण का उपयोग किया जाता	है। घर के
	लिए कौन-से ऊर्जा मीटर रेंज उपयुक्त होगा।	
	A house has 4kW connected loads and is fed by single phase supply. What range energ recommended for the house?	y meter is
	(a) 50 A (b) 15 A (c) 30 A (d) 10 A	
18.	$1~\mathrm{mA}$ मीटर के रेंज को $10~\mathrm{mA}$ रेंज में बदलना है। मीटर की चल कुंडली में $36~\Omega$ का प्र	ातिरोध है।
	समानांतर में संबद्ध करने हेतु प्रतिरोध का मूल्य कितना है?	• 4
	The range of 1 mA meter is to be changed to 10 mA. The moving coil of the meter has a of 36 Ω . What is the value of resistance to be connected in parallel?	resistance
	(a) 3Ω (b) 4Ω (c) 5Ω (d) 6Ω	
10	4-पोल, 25kW, 200V, तरंग वूंड डीसी शंट जिनत्र में, प्रत्येक समानंतर पथ में धारा ——	
19.	होगी।	
d:	In a 4-pole, 25kW, 200V wave wound DC shunt generator, the current in each parallel pa	th will be
	(a) 125A (b) 62.5A (c) 31.25A (d) 250A	

20. 120 V स्रोत में 1 Ω का श्रेणी आंतरिक प्रतिरोध है। एक लोड में लगाने योग्य अधिकतम शक्ति
————— है।

A 120 V source has a series internal resistance of 1 Ω . The maximum power that can be delivered to a load is

- (a) 1800 W
- (b) 3600 W
- (c) 800 W
- (d) 14400 W
- 21. चित्र में दिखाए गए अनुसार प्रतिरोध R के बारह तारों को एक घन/क्यूब बनाने के लिए जोड़ा गया है। क्यूब के विकर्ण छोर(1 से 7 तक) के बीच का प्रभावी प्रतिरोध है।

 Twelve wires, each of resistance R, are connected to form a cube as in figure. The effective resistance between the diagonal ends of the cube (1 to 7) is

- (a) 5R/6
- (b) 6R/5
- (c) 3R
- (d) 12R
- 22. H(s) = 1/s से युक्त एक रैखिक प्रणाली को एक इकाई सोपान फलन निवेश द्वारा उत्तेजित किया गया। t>0 के लिए निर्गम ———— है।

A linear system with H(s)=1/s is excited by a unit step function input. The output for t>0 is given by

- (a) $\delta(t)$
- (b) 1
- (c) t
- (d) t^2

23. चित्र में I_x तथा I_y का क्रमशः मान क्या है? The value of I_x and I_y in the figure respectively?

- (a) 0, 9
- (b) -9, 3
- (c) -3, 9
- (d) 3, -9

24	4. अधिकतम संभव गति जिससे प्रत्यावर्तक 50 Hz तथा 4000V को उत्पन्न करने के लिए ले र	नाया
	जा सकता है — है।	<i>7</i> 11 -11
	The maximum possible speed at which an alternator can be driven to generate 50 and 4000V is	Hz
	(a) 1500 आरपीएम/rpm (b) 3000 आरपीएम/rpm	
	(c) 4000 आरपीएम/rpm (d) 3600 आरपीएम/rpm	
		ē
25.	. यदि I_m तथा I_s वाइन्डिंग के क्रमशः मुख्य एवं प्रारंभक धारा हों, तो खंडित कला मोटर द्	वारा
	विकसित टॉर्क ———— के आनुपातिक है।	
	If I _m and I _s are the currents in the main and starting windings respectively, the torque developed a split phase motor is proportional to	by
	(a) I_m एवं I_s के बीच कोणीय साइन/Sine of angle between I_m and I_s	
	(b) Im एवं Is के बीच कोणीय कोसाइन/Cosine of angle between Im and Is	
	(c) मुख्य वाइंडिंग धारा, I _m /Main winding current, I _m	
	(d) सहयक वाइंडिंग धारा, I Auxiliary winding current, Is	
	which is	
26.	घरेलू रेफ्रिजरेटर में उपयुक्त मोटर — है।	
	The motor used in household refrigerators is	
	(a) डीसी श्रेणी के मोटर/DC series motor	
	(b) डीसी शंट मोटर/DC shunt motor	
	(c) उभयाधार मोटर/universal motor	
	(d) एकल चरण प्रेरण मोटर/single phase induction motor.	
	The lattice value of real-in	
	The 4Ω Sylphony would not be 1.1.	
27.	dana netra it man abo	
۷1.	विद्युत मशीन में एक पोल-पिच — के समान है। A pole-pitch in an electrical machine is equal to	
	11 pote piten in an electrical machine is equal to	
	(a) 90 विद्युत डिग्री/electrical degrees (b) 120 विद्युत डिग्री/electrical degrees	
-	(c) 180 विद्युत डिग्री/electrical degrees (d) 360 विद्युत डिग्री/electrical degrees	

- 28. अंग्रेज़ी वर्णमाला से एक वर्णमाला को चुना जाता है। स्वर के चयन की संभाव्यता का पता लगाएं। An alphabet is chosen from English alphabets. Find the probability of choosing a Vowel?
 - (a) 1/26
- (b) 5/26
- (c) 21/26
- (d) 0
- 29. $\sin 120^{0} \cos 330^{0} + \cos 240^{0} \sin 330^{0}$ का मान ξ ।

 The value of $\sin 120^{0} \cos 330^{0} + \cos 240^{0} \sin 330^{0}$ is ?
 - (a) 1
- (b) −1
- (c) 0
- (d) $\frac{\sqrt{3}}{2}$

- 30. $\lim_{x\to\infty} \frac{2x^2 + 3x + 4x}{x^2 + 4x + 1}$ का मान है।
 - The value of $\lim_{x\to\infty} \frac{2x^2+3x+4x}{x^2+4x+1}$ is?
 - (a) 2
- (b) 3
- (c) 3/4
- (d) 4

- 31. cos(x) से sin(x) की व्युत्पत्ति है।
 - Derivative of sin(x) with respect to cos(x)
 - (a) $-\cot(x)$
- (b) cot(x)
- (c) tan(x)
- (d) -tan(x)
- 32. बिंदु पर 2x + 3y + 9 = 0 रेखा पैराबोला $y^2 = 8x$ को छूती है।

 The line 2x + 3y + 9 = 0 touches the parabola $y^2 = 8x$ at the point
 - (a) 0, -3
- (b) 4, 2
- (c) 9/2, -6
- (d) -6, 9/2

33.	गोलक के विभव को ————	— द्वारा व्य	क्त किया जाता है	
	Potential of a sphere is given by			
	(a) $\frac{Q}{\pi \epsilon_0 r}$	(b)	$\frac{Q}{4\pi\epsilon_0 r}$	
	(a) $\frac{Q}{\pi \epsilon_0 r}$ (c) $\frac{Q^2}{4\pi \epsilon_0 r^2}$	(d)	$\frac{Q}{4\pi\epsilon_0 r}$ $\frac{Q}{4\pi\epsilon_0 r^2}$	
34.	ग्लास परावैद्युत के बीच प्रयुक्त वे	ल्टता वायु की	तुलना में 10 गुना अधिक विद्युत	। क्षेत्र उत्पन्न
	करता है। ग्लास की परावैद्युतांक —	* ****	– है।	
	Voltage applied across a glass dielectric constant of glass is	etric produces a	n electric field 10 times that of air.	The
	(a) 0.1	(b)	10	
	(c) 100	(d)	0.01	
35.	आइ ई नियम के अनुसार चालक ए	वं भूमि के बीच	का विद्युतरोधन प्रतिरोध ——	——— से
	कम नहीं होना चाहिए।			
	As per I.E Rules the insulation resist	ance between o	conductor and Earth should not be le	ess than
	(a) 100 MΩ/आउटलेट की सं./no.	of outlets		
	(b) 80 MΩ/आउटलेट की सं./no. o	f outlets		
	(c) 50 MΩ/आउटलेट की सं./no. o	f outlets		
	(d) 30 MΩ/आउटलेट की सं./no. o	f outlets		990
36.	0.001μF की क्षमता के वायु संधारि	त्र को 200 वो.	के डीसी वोल्टता से जोड़ा गया है	। संधारित्र में
	संचित ऊर्जा — होग	ो।		
	An air condenser with capacitance stored in the condenser will be	0.001 μF is co	onnected to a dc voltage of 200 V	. The energy
	(a) 10 μ जूल/10 μ joules	(b)	20 μ जूल/20 μ joules	

(c) 20 जूल/20 joules

(d)

10 जूल/10 joules

37.		त्रिकला (50Hz) पूर्ण परि three phase (50Hz) full					
	(a)	50 Hz (b)	100 Hz	(c)	150 Hz	(d)	300 Hz
38.	तरंग A si	ा रूप	– होगा।				प्रतिलोमक में धारा क e load, the waveform o
	(a)	ज्सावक्रीय/Sinusoidal		(b)	आयताकार/R	Rectangular	:
	(c)	समलंब/Trapezoidal		(d)	त्रिभुजाकार/	Γriangular	
39.		चुंबकीय पदार्थ क्यूरी त ve Curie temperature, a				ान जाता है	rī .
	(a)	फेर्रोचंबकीय/ferromagn	etic	(b)	पाराचुंबकीय/]	paramagne	tic
	(c)	डायाचुंबकीय/diamagne			~		52.4
40.		आवृत्ति ट्रांसफॉर्मर क्रोड n frequency transformer				निर्मित हैं।	
	(a)	फेर्राइट्स/Ferrites		(b)	एमयू-धात्/M	u-metal	
	(c)	मॉन धातु/Mone-metal		(d)			None of the above
41.		प्रभाव — effect can be used to me		रने के ी	लिए उपयोग (केया जाता	है।
	(a)	विद्युत क्षेत्र तीव्रता/Ele	ectric field intens	sity			
	(b)	चुंबकीय क्षेत्र तीव्रता/M	agnetic field inte	ensity			
~:	(c)	वाहक सांद्रण/Carrier co	oncentration				
	(d)	उपर्युक्त में से कोई न	None of these				

42.	एक ट्रांसफॉर्मर वोल्टता को 100 गुना बढ़ाता है। प्राइमरी और सेकेंडरी में धारा का अनुपात क्या होगा? A transformer steps up voltage by a factor 100. The ratio of current in the primary to that in the secondary is
	(a) 1 (b) 100 (c) 0.01 (d) 0.1
43.	बूलीय तर्क व्यंजक (A'B'C' + A'BC' + A'BC + ABC') के लघुकृत रूप को — प्रकार
	से घटाया जा सकता है।
	The minimised form of Boolean logic expression (A'B'C' + A'BC' + A'BC + ABC') can be reduced to
	(a) $A'C' + BC' + A'B$ (b) $A'C' + B'C' + A'B$
	(c) $A'C + BC + A'B$ (d) $AC + BC' + AB$

44. एक सीढ़ी का स्विच (दूसरी मंजिले पर रखे स्विच पर विचार किए बिना प्रत्येक मंजिले की स्विच का एक बत्ती परस्वतंत्र नियंत्रण होता है) यह किस प्रकार का तर्क है।

A staircase switch (where the switch in each floor has independent control over one lamp irrespective of the position of the switch in other floor) is which logic

- (a) NAND (b) NOR (c) XOR (d) OR
- 45. एक लघु संचरण रेखा में, प्रतिरोध व प्रतिघात समान पाए जाते हैं तथा भार नियमन शून्य प्रतीत होता है, भार में होगी।

 In a short transmission line, resistance and reactance are found to be equal and load regulation appears to be zero, the load will
 - (a) इसमें एकक शक्ति गुणक होगी/Have unity power factor
 - (b) इसमें शून्य शक्ति गुणक होगी/Have zero power factor
 - (c) इसमें 0.707 की पश्चतता होगी/Have 0.707 lagging
 - (d) इसमें 0.707 की अग्रकता होगी/Have 0.707 leading

46.	. एक परिपथ में $22~\Omega$ की प्रतिबाधा है तथा वह परिपथ 0.8 की शक्ति गुणक पश्चता से
	10 एम्पीयर धारा खींचता है। निम्नलिखित में से कौन-सी आभासीय शक्ति होगी?
	A circuit has an impedance of 22 Ω and drawing a current of 10 amperes at 0.8 power factor lagging. Which one of the following will be the apparent power?
	(a) 2.2 kVA (b) 22 kVA (c) 220 kVA (d) 1.76 kVA
47.	3-ф संतुतित परिपथ के शक्ति मापन हेतु जब दो वॉटमापी का उपयोग किया जाता है तथा एक वॉटमापी ऋणात्मक दिखाती है, इसका मतलब यह है कि पश्चता कोण ————— है। When two wattmeters are used to measure power of a 3-ф balanced circuit and one wattmeter reads
	negative, it means the angle of lag is
	(a) 0° (b) 30° (c) 60° (d) 60° 社 3547/Above 60°
48.	15Ω के तीनों समान प्रतिरोधों को डेल्टा में 400 V, 3-कला संभरण के बीच संबद्ध किया गया है। प्रत्येक के समतुल्य स्टार संबद्ध भार के प्रतिरोध का मूल्य — होगा। Three identical resistances, each of 15Ω are connected in delta across 400 V, 3-phase supply. The value of resistance in each leg of the equivalent star-connected load would be
	(a) 15Ω (b) 7.5Ω (c) 5Ω (d) 30Ω
	and the second of the second field of the field of the second field of the second of t
49.	3-फेज़, 3-लाइनवाली 100 कि.मी. लंबी संचरण लाइन को 110 किलोवोल्ट (KV) से लोड किया गया
	है। यदि प्रत्येक फेज़ की हानि 5MW है तथा लोड 150 MVA है तो लाइन का प्रतिरोध ————— होगा।
	A 3-phase, 3-line, 100 Km long transmission line is loaded at 110 KV. If the loss per phase is 5 MW and the load is 150 MVA, the resistance of line is.
	(a) 8.06Ω /phase (b) 0.806Ω /phase (c) 0.0806Ω /phase (d) 80.6Ω /phase
	the charge are recognized from and the control of t
0.	3-कला परिपथ में एक प्रेरण मोटर 1000 rpm सिहत तुल्यकालिक गति 935 rpm में
	5 यांत्रिक एच पी विकसित करता है। स्टेटर निवेश क्या है यदि स्टेटर ह्रास 400 W है?
æ,	A 3-phase induction motor with a synchronous speed of 1000 rpm develops 5 mechanical hp at 935 rpm. What is the stator input if the stator loss is 400 W?
	(a) 5.6 kW (b) 4.4 kW (c) 3.6 kW (d) 7.2 kW

51.	एक सिलिकन ट्रांसिस्टर में, उत्सर्जक धारा में 8 mA का बदलाव, संग्राही धारा में 7.8 mA का
	बदलाव उत्पन्न करता है। संग्राही धारा में समतुल्यता उत्पन्न कराने के लिए आधार धारा में
	कितना बदलाव लाना ज़रूरी है।
	In a silicon transistor, a change of 8 mA in emitter current produces a change of 7.8 mA in the collector current. What change in base current is necessary to produce an equivalent change in collector current?
	(a) 0.1 mA (b) 0.2 mA (c) 0.4 mA (d) 0.8 mA
52.	1.2 kΩ आंतरिक प्रतिरोध के सिग्नल स्रोत को, 140 वोल्टता वृद्धि सहित, एक प्रवर्धक के निवेश से
	जोड़ा जाता है। कुल 100 की वृद्धि पाने हेतु प्रवर्धक में निवेश प्रतिरोध का निम्नतर मान कितना
	होगा?
	A signal source of internal resistance $1.2 \text{ k}\Omega$ is connected to the input of an amplifier with a voltage gain of 140. What is the value of input resistance the amplifier should have to get an overall gain of 100?
	(a) $1 \text{ k}\Omega$ (b) $2 \text{ k}\Omega$ (c) $3 \text{ k}\Omega$ (d) $1.5 \text{ k}\Omega$
53.	एक श्रव्य प्रवर्धक में, 20 Hz की निम्न अंतक आवृत्ति तथा 20 KHz की उच्च अंतक आवृत्ति तथा
00.	12 Ω का लोड है। 1 KHz पर प्रवर्धक, लोड को 20 W प्रदान करता है। समान इनपुट वोल्टता
	के लिए 20 Hz में rms लोड वोल्टता कितनी होगी?
	An audio amplifier has a lower cutoff frequency of 20 Hz and upper cutoff frequency 20 KHz has a load of 12 Ω . At 1 KHz the amplifier delivers 20 W to the load. What is the rms load voltage at 20 Hz, for identical input voltage?
	(a) 10.95 वॉ./V (b) 12.35 वॉ./V (c) 16.12 वॉ./V (d) 3.48 वॉ./V
54.	वृद्धि A_v एवं ऋणात्मक पुनर्निवेश(फीडबैक) भिन्न(फ्रैक्शन) m_v है। पुनर्निवेश(फीडबैक) सहित
54.	पुनर्निवेश(फीडबैक) के बिना एक प्रवर्धक का अरैखिक विरुपण D है। प्रवर्धक में विवृत पाश वोल्टता वृद्धि A _v एवं ऋणात्मक पुनर्निवेश(फीडबैक) भिन्न(फ्रैक्शन) m _v है। पुनर्निवेश(फीडबैक) सहित अरैखिक विरूपण — होगा। The non-linear distortion of an amplifier is D without feedback. The amplifier has an open loop voltage gain of A _v and negative feedback fraction of m _v . The non-linear distortion with feedback will be
54.	वृद्धि A _v एवं ऋणात्मक पुनर्निवेश(फीडबैक) भिन्न(फ्रैक्शन) m _v है। पुनर्निवेश(फीडबैक) सहित अरैखिक विरूपण — होगा। The non-linear distortion of an amplifier is D without feedback. The amplifier has an open loop voltage gain of A _v and negative feedback fraction of m _v . The non-linear distortion with feedback

55.	यदि किसी डीसी मोटर का फ्लक्स अपरिवर्तित रहता है तथा आपूर्ति वोल्टता में 20% की वृद्धि की
	जाती है, यह देखा जाता है कि धारा पूर्व समान रहती है तो, इसकी गति —————
	If flux of a DC Motor is unchanged, and supply voltage is increased by 20%, it is observed that the current remained same as earlier. Its speed ———————————————————————————————————
	(a) अपरिवर्तित रहेगी/Remain unchanged
	(b) 20% से बढ़ेगी/Increases by 20%
	(c) 20% से घटेगी/Decreases by 20%
	(d) उपर्युक्त में से कोई नहीं/None of the above
56.	प्राप्त मोटर के टॉर्क को निम्नलिखित द्वारा परिवर्तित किया जा सकता है।
	The torque of a given motor can be varied by
	(a) फ्लक्स परिवर्तन से/Changing flux
	(b) आर्मेचर धारा परिवर्तन से/Changing armature current
	(c) फ्लक्स एवं आर्मेचर धारा दोनों के परिवर्तन से/Changing flux and armature current both
	(d) समांतर पथ की संख्या के परिवर्तन से/Changing no. of parallel paths
57.	ट्रांस्फॉर्मर का नियमन — है।
	The regulation of a transformer is
	(a) $\frac{v_0 - v}{v_0} \times 100\%$ (b) $\frac{v_0 - v}{v + v_0} \times 100\%$ (c) $\frac{v - v_0}{v} \times 100\%$ (d) $\frac{v - v_0}{v_0} \times 100\%$
58.	4 Pole , 3¢ प्रेरण मोटर 3¢, 50 Hz संभरण में कार्य करता है। यदि मोटर का स्लिप 4% है
	तो उसकी वास्तविक गति — होगी।
	A 4 Pole , 3ϕ induction motor works on 3ϕ , 50 Hz supply. If the slip of the motor is 4%, the actual speed will be
	(a) 1500 आरपीएम/rpm (b) 1460 आरपीएम/rpm

(c) 1440 आरपीएम/rpm

(d) 720 आरपीएम/rpm

	Wh	at should be the value of	f earth resistance	for a la	arge powe	er station?			
	(a)	1 Ω		(b)	0.5 Ω				
	(c)	2 Ω		(d)	5 Ω				
60.	संचा	र लाइन के पास (क्षैति	ाज एवं ऊर्ध्वाधर	रूप	से) पावर	केबिल लगाने	हितु न	यूनतम	निष्कासन
	क्या	होना चाहिए?					**		
	Wha	at should be the minimu	m clearance for	laying p	power cab	oles near com	nunicati	on line	
	(hor	izontally and vertically)	?						
	(a)	0.2 m		(b)	0.6 m				
	(c)	1 m		(d)	1.5 m				
61.	एक	माइक्रोप्रोसेसर में, ओपी	-कोड फेच साइवि	hल —	387	है।	4.5T		
	In a	microprocessor, op-cod	e fetch cycle is?	8					
	(a)	अनुदेश साइकिल का उ	अंतिम भाग/Last	part of	instruction	on cycle			
	(b)	अनुदेश साइकिल का प्र	प्रथम भाग/First p	part of	instruction	n cycle			
	(c)	अनुदेश साइकिल का व	मध्य भाग/Intern	nediate	part of in	struction cycl	e		
	(d)	बस द्वारा डेटा रिसेप्श	ল/Data reception	n throu	gh bus				
62.	∫ sir	$\mathbf{n}(x)dx$ का समाकलन -		— है।		o poloni noj			
		n(x) dx is			183				
4.	J 3	10 111 h							
	(a)	sin(x)		(b)	cos(x)	18			
	(c)	$-\sin(x)$		(d)	-cos(x)				

59. एक बड़े पावर स्टेशन का भूमि प्रतिरोध क्या होना चाहिए?

63. असंख्य बस में एक तुल्यकालिक जिनत्र को लगाने पर वह पश्चता शक्तिगुणक पर शक्ति देती है। जब इसके फील्ड उत्तेजन को बढ़ाया जाता है, इसका प्रभाव क्या है?

A synchronous generator connected to an infinite bus delivers power at lagging power factor. If its field excitation is increased, what is the effect?

(a) टिर्मिनल वोल्टता बढ़ जाती है/Terminal voltage increases

(b) कोण की वोल्टता बढ़ जाती है/Voltage angle increases

(c) वितरण की गई धारा बढ़ जाती है/Current delivered increases

(d) उपर्युक्त सभी/All of the above

64.	दीर्घ शीर्षस्थ रेखाओं पर फरांती प्रभाव का अनुभव तब होता है जब —————
	The Farranti effect on long over head lines is experienced when

- (a) जब रेखा में थोड़ा बहुत भार डाला जाता है/The line is slightly loaded
- (b) शक्ति गुणक में एकता होती है/Power factor is unity
- (c) शक्ति गुणक में अग्रकता होती है/Power factor is leading
- (d) कोरोणा प्रभाव जब अधिक प्रभावी होता है/Corona effect is dominant
- 65. निर्वात परिपथ विच्छेदक में सबसे अधिक समस्या क्या होती है? Which is the most serious problem in vacuum circuit breaker
 - (a) अपर्याप्त आर्क क्वेन्चिंग/Poor arc quenching
 - (b) निम्न ऊष्मीय स्थायित्व/Low thermal stability
 - (c) धारा चोप्पिंग/Current chopping
 - (d) ऊपर्युक्त सभी/All of the above
- 66. धारा को वहन करनेवाले चालक में लगे चुंबकीय क्षेत्र के दिशा को ———— द्वारा पता लगाया जा सकता है।

The direction of magnetic field set up in a current carrying conductor can be found out by

- (a) फ्लेमिंग्स दक्षिणावर्ती नियम/Flemings right hand rule
- (b) फ्लेमिंग्स वामावर्ती नियम/Flemings left hand rule
- (c) कॉर्क स्क्रू नियम/Cork screw rule
- (d) थंब नियम/Thumb rule

67.	ग्रेम	कार्रा क्षेत्र के लिए अपेरि	भेत पटीपक जहाँ	मश्म	कार्य किया जाता है	का कम	
07.	ऐसे कार्य क्षेत्र के लिए अपेक्षित प्रदीपक जहाँ सूक्ष्म कार्य किया जाता है, का क्रम ————————————————————————————————————						
	The	Illumination required to	or a work place wh	iere fi	ne work is performed	will be of the order of	
	(a)	500 ल्यूमेन/वर्ग मीटर/	lumens/sq.m	(b)	1000 ल्यूमेन/वर्ग मीर	दर/lumens/sq.m	
	(c)	1500 ल्यूमेन/वर्ग मीटर	/lumens/sq.m	(d)	2000 ल्यूमेन/वर्ग मीर	र/lumens/sq.m	
68.	प्रतिव	दीप्तिजनक ट्यूब की ज	योति दक्षता ——		है।		
00.		inous efficiency of a flu					
	(a)	10 ल्यूमेन/वाह/10 lum	ens/W	(b)	20 ल्यूमेन/वाद्ट/20 lu	mens/W	
	(c)	60 ल्यूमेन/वाह/60 lum		(d)	150 ल्यूमेन/वाह/150		
	(0)	०० स्पूर्णनाया है। ०० विद्या	ichs/ w	(u)	130 (4010114121130	Idilions/ VV	
			tomber a pita		1969-166 1569E 1		
69.		100 KHz में प्रचालित		~			
	In a	n SMPS, operating at 20	to 100 KHz, wha	t is th	e main switching elem	ient?	
	(a)	थाइरिस्टर/Thyristor		(b)	मोस्फेट/MOSFET		
	(c)	ट्रिएक/Triac		(d)	यूजेटी/UJT	and added the	
				1 1 111			
70.	एक	100 V डी सी के स्रोत	तव 0.1 Hके इं	डिक्ट	ा लोड के बीच लोड व	को नियंत्रित करने के लिए	
	एक					00 mA है। थाइरिस्टर को	
		करने के लिए उसके गे				NET TELEVISION IN	
	Betv	veen a 100 V DC source	e and a 0.1 H indi	ıctive	load, a thyristor is us	ed to control the load. The	
		ning current of the thyri of the thyristor to turn i		Vhat i	s the minimum pulse	width to be applied to the	
				(-)	1 (4)	50	
	(a)	100 μs (b)	100 s	(c)	1 ms (d)	50 μs	
					etic field so operation		
			elat. Felsak		CONTRACTOR OF THE CONTRACTOR O		
71.		z परिशोधक के लिए पि					
	Typ	ical value of filter capac	itor for a 50Hz re	ctifier	Conk seren in		
6:	(a)	1000 μ F (b)	50 μF	(c)	1000 pF (d)	100 pF	

18

72. नीचे दिए गए चित्र के अनुसार, 2Ω प्रतिरोधक से स्थिर स्थिति धारा — है। In the Figure shown, Steady state current through 2Ω resistor ?

- (a) 1.2 A
- (b) 0.9 A
- (c) 0.6 A
- (d) 5.2 A

73. चित्र में, $R=1\Omega$, i का मान क्या है? In the figure, $R=1\Omega$, what is the value of i?

74. एक एचटीएमएल पेज में, tag के अलावा निम्निलिखित में से कौन-सा घटक टेक्स्ट को मोटा करता है?

In a HTML page, apart from tag which of the following make the text bold?

(a) <fat>

(a)

- (b)
- (c) <emp>
- (d) <thick>
- 75. छः बिट संख्याओं को द्वि पूरक, एक पूरक व चिहन तथा परिमाण रूप में दिखाया मानें। इनमें से किसमें 011000 तथा 011000 पूर्णांकों का जोड़ अतिप्रवाह का कारण बनेगा?

Consider the representation of six-bit numbers in two's complement, one's complement and sign and magnitude format. In which representation, the addition of integers 011000 & 011000 will result in an overflow.

- (a) द्वि पूरक मात्र/In Two's complement only
- (b) एक प्रक एवं द्वि प्रक/In one's complement and two's complement
- (c) चिह्न व परिमाण व एक पूरक/Sign and magnitude and one's complement
- (d) तीनों में/In all three

76.	अधि The	कितम टॉर्क supply vol	घटेगी?	duction motor					ने प्रतिशत से approximately,
	(a)	20%	(b)	50%	(c)	40%	(d)	10%	
77.	घटा The	व(स्लिप 3%	6) ————————————————————————————————————	है।					Cu प्रति चरण '. The rotor Cu
	(a)	176W	(b)	492W	(c)	1050W	(d)	728W	
78.		no load spe संभरण अ इसके पोल अधिकतम	eed of an indu गवृत्ति/The su न की संख्या/	iction motor descripply frequency The number of The maximum and (b)	epends on y its poles		रेत है।		
79.	निम्नलिखित पदार्थों में से किसे प्रतिरोध की ऋणात्मक ताप गुणांक है? Which of the following materials have negative temperature coefficient of resistance?								
	(a)	पीतल/Bra	SS		(b)	तांबा/Cop	per		
	(c)	कार्बन/Ca	rbon		(d)	एलुमिनिय	म/Aluminiu	ım	
00	teru.	- 			este et e gazeta harriar	4	TO 1000 YES		n famili Marian Gen bar
80.		ज्यावकीय तरंग रूप के लिए रूप गुणक — है। For a sinusoidal wave form, form factor is							
d,	(a)	1.11	(b)	1.00	(c)	2.22	(d)	0.55	

D

भारत सरकार / Government of India अंतरिक्ष विभाग / Department of Space विक्रम साराभाई अंतरिक्ष केंद्र / VIKRAM SARABHAI SPACE CENTRE तिरुवनंतपुरुम / Thiruvananthapuram - 695 022

तकनीकी सहायक (विद्युत इंजीनीयरी, विज्ञा.सं.296) के पद के चयन हेतु लिखित परीक्षा
WRITTEN TEST FOR SELECTION TO THE POST OF TECHNICAL ASSISTANT (ELECTRICAL ENGG., ADVT. NO. 296)
पद सं.1331 / Post No 1331

सर्वाधिक अंक/Maximum Marks : 320	तिथि / Date: 06.08.2017 समय/Time. 2 घंटे / 2 hours
अभ्यार्थी का नाम / Name of the candidate :	अनुक्रमांक सं / Roll no.

अभ्यर्थियों के लिए अनुदेश /Instructions to the Candidates

- 1. आपके द्वारा वेब आवेदन में प्रस्तुत किए गए ऑन-लाइन डेटा के आधार पर आपको लिखित परीक्षा के लिए आमंत्रित किया गया है। <u>यदि आपने वेब में किसी सूचना की गलत प्रविष्टि की है या विज्ञापन के अनुसार अपेक्षित योग्यता नहीं रखते हैं तो आपकी अभ्यर्थिता अस्वीकृत कर दी जाएगी।</u>
 - You have been called for the written test based on the online data furnished by you in the web application. If you have wrongly entered in the web any information or you do not possess the required qualification as per our advertisement, your candidature will be rejected.
- 2. प्रश्न-पत्र, 80 प्रश्नों से युक्त प्रश्न-पुस्तिका के रूप में है और परीक्षा की अवधि 02 घंटे है। The Question paper is in the form of Question Booklet with 80 questions and the duration of the test is 02 hours.
- 3. चार विकल्पों सिहत वस्तुनिष्ठ प्रकार के प्रश्न होंगे जिनमें से सिर्फ एक असंदिग्घ रूप से सही होगा । The questions will be objective type with four options out of which only one will be unambiguously correct.
- 4. प्रत्येक प्रश्न केलिए 04 अंक होंगे और प्रत्येक गलत उत्तर केलिए एक अंक काटा जाएगा । Each question carries 04 marks and one mark will be deducted for each wrong answer.
- 5. प्रश्नों के उत्तर देने के लिए दूसरी प्रति सहित अलग ओएमआर उत्तर-पुस्तिका दी जाएगी। A separate OMR answer sheet with carbon coated copy will be provided to mark the answer options.
- 6. आपको, उत्तर-पुस्तिका में दिए गए अनुदेशों के अनुसार, नीली/काली स्याही के बॉल पाइंट पेन से ओएमआर उत्तर-पुस्तिका में संबंधित ऑवल को अंकित कर सही उत्तर का चयन करना है।
 You have to select the right answer by marking the corresponding oval on the OMR answer sheet by blue/black ball point pen.
- एक प्रश्न के लिए अनेक उत्तर गलत माना जाएगा।
 Multiple answers for a question will be regarded as wrong answer.

- 8. <u>ऊपर दाएँ कोने में मुद्रित प्रश्न-पुस्तिका श्रेणी कोड</u>, <u>ओएमआर उत्तर पुस्तिका पर निर्दिष्ट स्थान पर लिखना चाहिए।</u>

 <u>Question booklet code printed on the top right corner should be written in the OMR answer sheet in the space provided.</u>
- 9. प्रश्न-पुस्तिका में आपका नाम तथा अनुक्रमांक सही लिखें। Enter your Name and Roll Number correctly in the question booklet.
- 10. ओएमआर उत्तर-पुस्तिका में सभी प्रविष्टियां **नीली/काली स्याही के बॉल पाइंट पेन** से ही की जानी चाहिए। All entries in the OMR answer sheet should be with **blue/black ball point pen** only.
- 11. परीक्षा हॉल में निरीक्षक की उपस्थिति में ही आपको हॉल-टिकट पर हस्ताक्षर करना चाहिए। You should sign the hall ticket only in the presence of the Invigilator in the examination hall.
- 12. लिखित परीक्षा चलनेवाले हॉल के अंदर कंप्यूटर, कालकुलेटर, मोबाइल फोन तथा अन्य इलेक्ट्रॉनिक जुगतें, पाठ्य-पुस्तकें, नोट आदि लाने की अनुमित नहीं दी जाएगी।

 Computers, calculators, mobile phones and other electronic gadgets, text books, notes etc., will not be allowed inside the written test hall.
- 13. परीक्षा पूर्ण होने पर, ओएमआर उत्तर-पुस्तिका को ऊपर के छेदन चिह्न से फाड़ें और मूल ओएमआर उत्तर-पुस्तिका निरीक्षक को सौंपे तथा दूसरी प्रति आपके पास रखें। On completion of the test, tear the OMR answer sheet along the perforation mark at the top and hand over the original OMR answer sheet to the invigilator and retain the duplicate copy with you.
- 14. प्रश्न-पुस्तिका अभ्यर्थी अपने पास रख सकते हैं। The question booklet can be retained by the candidates.
- 15. परीक्षा के प्रथम घंटे के दौरान अभ्यर्थियों को परीक्षा हॉल छोड़ने की अनुमित नहीं है। Candidates are not permitted to leave the examination hall during the first hour of the examination.

तकनीकी सहायक (विद्युत) पद सं. 1331 TECHNICAL ASSISTANT (ELECTRICAL) POST NO.1331

1.	$(0+j\ 0.8)\Omega$ प्रतिबाधा की एक एकल कला संचारण लाइन $300\ V$ पर, $500\ A$ का प्रतिरोध लोड देती है। प्रेषण सिरे पर, शक्ति गुणकहै। A single phase Transmission line of impedance $(0+j\ 0.8)\Omega$ supplies a resistive load of $500\ A$ at $300\ V$. At the sending end, power factor is
	a) इकाई/Unity b) 0.8 पश्चता/lagging c) 0.8 अग्रता/leading d) 0.6 पश्चता/lagging
2.	R=1.4 Ω व $X=0.8$ Ω की एक संचारण लाइन पर 2000 V पर 100 KVA एकल कला लोड दिया जाता है। जब लोड शक्ति गुणक इकाई है तो प्रेषण सिरे पर बोल्टताहै। A single phase load of 100 KVA is delivered at 2000 V over a transmission line having R=1.4 Ω and $X=0.8$ Ω , when the power factor of load is unity, the voltage at sending end is a) 1680.3 V b) 2980.1 V c) 2068.3 V d) 2070.4 V
3.	50 Hz पर एक विशेष प्रणाली की परिमंडल (कोरोना) हानि 1 kW/km प्रति कला है। इसी प्रणाली में 60 Hz पर परिमंडल हानिहोगी। The corona loss on a particular system at 50 Hz is 1 kW/km per phase. The corona loss at 60 Hz in the same system would be
	a) 1 kW/km प्रति कला/1 kW/km per phase b) 0.8 kW/km प्रति कला/0.8 kW/km per phase c) 1.5 kW/km प्रति कला/1.5 kW/km per Phase d) 1.13 kW/km प्रति कला/1.13 kW/km per phase
4.	संचारण लाइन की नियत क्षमता को ध्यान में रखते हुए अगर वोल्टता को 'n' गुना वर्धित किया जाता है, तो चालक का आकार (अनुप्रस्थ काट का क्षेत्र)होगा। If voltage is increased 'n' times taking into consideration of constant efficiency of a transmission line, the size of conductor will be (area of cross section)
	a) मूल से n गुना बड़ा होगा/Increases to n times that of original b) मूल से 1/n गुना छोटा होगा/Decreases to 1/n times that of original c) मूल से 1/n² गुना छोटा होगा/Decreases to 1/n² times that of original d) मूल से n² गुना बड़ा होगा/Increases to n² times that of original
5.	100 MVAR पर एक शंट प्रतिघातक (रिएक्टर) को उसके निर्धारित वोल्टता के 98% और निर्धारित आवृत्ति के 96% पर प्रचालित किया जाता है। इसकी क्षमताहै।
	A shunt reactor at 100 MVAR is operated at 98% of its rated voltage and 96% of its rated frequency, its capacity is
	a) 98 MVAR b) 96 MVAR c) 100.04 MVAR d) 104.02 MVAR
6.	जब प्राथमिक परिपथ, धारा का वहन करती है तो सावधानी बरतने के लिए यह आवश्यक है कि यह सुनिश्चित किया जाए कि एक धारा ट्रांसफॉर्मर का द्वितीयक खुले परिपथ में नहीं है क्योंकि Precautions are essential for ensuring that the secondary of a current transformer is

not open circuited when the primary circuit is carrying current. This is due to

a) द्वितीयक में खतरनाक रूप से उच्च वोल्टता उत्पन्न हो सकती है dangerously high voltage might develop across secondary

b) लौहचंबकीय कोर में अवशिष्ट चंबकत्व उत्पन्न हो सकती है the ferromagnetic core may develop residual magnetism

- c) परावर्तित प्रतिबाधा प्राथमिक परिपथ में धारा के प्रवाह को रोक सकती है the reflected impedance may prevent the flow of current in the primary circuit
- d) उपर्यक्त में से कोई नहीं None of the above
- दिए गए तरंगरूप में, वोल्टता का RMS मान.......है। 7. In the waveform shown, RMS value of voltage is

- a) $\frac{200}{\pi}$ V b) $\frac{100}{\pi}$ V c) 200 V d) 100 V

- एक घरेलू विद्युत संस्थापन में, एक 16 A पावर परिपथ के लिए अनुमत अधिकतम लोड 8.

In a domestic electric installation, the maximum load permitted in a 16 A power circuit is

- a) 5 kW
- b) 3 kW
- c) 4 kW
- d) 10 kW
- $arepsilon_r$ साक्षेप विद्युतशीलता के एक परावैद्युत को $\mathrm{C_o}$ धारिता की एक वायु संधारित्र के साथ 9. मिलाया जाता है तो उसकी धारिता.....हो जाएगी।

A dielectric of relative permittivity ε_r is introduced in an air capacitor of capacitance Co, its capacitance will become

- a) $\frac{c_0}{\varepsilon_r}$ b) $\varepsilon_r c_0$ c) $\frac{\varepsilon_r}{c_0}$ d) $(1+\varepsilon_r) c_0$
- 10. जर्मेनियम के लिए वर्जित ऊर्जा अंतराल.......है। The forbidden energy gap for Germanium is
 - a) 0.2 eV
- b) 3.5 eV
- c) 0.7 eV
- d) 1.11 eV
- एकल कला डायोड सेतु दिष्टकारी में लोड प्रतिरोध $50~\Omega$ है और स्रोत वोल्टता 11. $200 \sin \omega t \, V$ है, जहाँ $\omega = 100\pi \, rad/s$ । लोड प्रतिरोधक में क्षय.....है।

In single phase diode bridge rectifier, the load resistance is 50 Ω and source voltage is $200 \sin \omega t V$, where $\omega = 100\pi rad/s$. The power dissipated in the load resistor is

- a) $\frac{3200}{\pi}$ W b) $\frac{400}{\pi}$ W
- c) 400 W
- d) 800 W
- पूर्ण रूप से नियंत्रित 3 कला परिवर्तित्र, 150 A की स्थिर धारा पर एक दिष्टधारा लोड 12. को शक्ति प्रदान कर रही है। परिवर्तित्र के प्रत्येक थैरिस्टर में बहनेवाली RMS धारा.... है।

		ontrolled converter is The RMS current th		a D.C load at a constant of the converter is
	a) 50 A	b) 100 A	c) $\frac{150\sqrt{2}}{\sqrt{3}}$ A	d) $\frac{150}{\sqrt{3}}$ A
13.				पूर्ण भार ताम्र हानि 600 धिकतम होगी, वह है
		The percentage load		W and full load copper mer is expected to have
	a) 50.0%	b) 70.7%	c) 141.4%	d) 200.0 %
T	प्रेरण मोट़र की घूर्ण विद्युत प्रदाय का कर he direction of ro applied with 3-pha		होती है। मोटर की वा . होना चाहिए। induction motor is having phase sequen	मावर्त घूर्णन के लिए clockwise when it is nce A-B-C. For counter
	a) B-C-A c) A-C-B	b) C-d) (a)	A-B और (b) दोनों/Both	(a) and (b)
और Foi	V/rad/s में टैकोमी a tachometer, if	टर स्थिरांक k_t है, तो $ heta(t)$ is the rotor displace	अंतरण फलन $\frac{E(s)}{\theta(s)}$ cement in radians, $e(s)$	ट में निर्गम वोल्टता $e(t)$ है। (t) is the output voltage ransfer function, $\frac{E(s)}{\theta(s)}$ is
	a) $k_t s^2$	b) $\frac{k_t}{s}$	c) $k_t s$	d) k_t
1.13 एक	8 V का एक मानक परीक्षण सेल 660	सेल 600 मिलीमीटर प	र संतुलन प्राप्त करता	उपयोग करता है। emf है। यह देखा गया है कि परीक्षण सेल का emf
A I				ard cell of emf 1.18 V to at 660 mm. The emf
	a) 1.00 V	b) 1.30 V	c) 1.50 V	d) 1.70 V
लोड A 4	पर मशीन का निर्गग 00 V, 15 kW, 4 p	न बल आघूर्ण (टॉर्क)	है। ected induction mot	स्लिप 4 प्रतिशत है। पूर्ण or has full load slip of
	a) 1.66 Nm	b) 9.50 Nm	c) 99.49 Nm	d) 624.73 Nm
मोट For	र का घूर्णन वेग	है। bipolar stepper mot		00 steps/s है। RPM में te is 100 steps/s. The
	a) 15	b) 30	c) 60	d) 90

	एक 8 पोल, दिष्टधारा जनित्र में 32 कुंडली 6 फेरे प्रति कुंडली युक्त एक सिम्प्लेक्स वेव वाउंड आर्मेचर है। इसका फ्लक्स प्रति पोल 0.06 Wb है। मशीन 250 घूर्णन प्रति मिनट से
	चल रही है। प्रेरित आर्मेचर वोल्टता है। An 8 pole, DC generator has a simplex wave wound armature containing 32 coils of 6 turns each. Its flux per pole is 0.06 Wb. The machine is running at 250 RPM. The induced armature voltage is
	a) 96 V b) 192 V c) 384 V d) 768V
	एक 480 MW, 3 कला Y-जोड़ तुल्यकालिक जनित्र की 0.8 शक्ति गुणक पर 20 kV की निर्धारित वोल्टता है। पूर्ण भार निर्धारित परिस्थितियों में प्रचालन के समय रेखा धारा है।
ä	A 480 MW, 3 Phase Y-connected synchronous generator has a rated voltage of 20 kV at a power factor of 0.8. The line current when operating at full load rated conditions is
	a) 13.43 kA b) 17.3 kA c) 23.25 kA d) 27.36 kA
21.	एक 50 Hz, 4 Pole, 500 MVA, 22 kV टर्बो जिनत्र 0.8 शक्ति गुणक में निर्धारित MVA दे रही है। अचानक एक खराबी आने के कारण विद्युत शक्ति निर्गम में 40% की कटौती होती है। मान लें कि कोई हानि नहीं है और शाफ्ट पर स्थिर शक्ति निवेश है। खराबी आने के समय जिनत्र में त्वरक बल आधूर्ण (टॉर्क)है। A 50 Hz, 4 Pole, 500 MVA, 22 kV turbo generator is delivering rated MVA at a power factor of 0.8. Suddenly a fault occurs reducing the electric power output by 40%. Neglect the losses and assume constant power input to the shaft. The accelerating torque in the generator at the time of fault is
	a) 1.528 MNm b) 1.018 MNm c) 0.848 MNm d) 0.509 MNm
	the man with the man and the second second second second second to the second s
22.	250 RPM के निर्धारित वेग की एक चलजलीय टर्बाइन को एक तुल्यकालिक जिनत्र से जोड़ा गया है। 50 Hz पर शक्ति उत्पन्न करने के लिए जिनत्र में आवश्यक ध्रुवों की संख्याहै। A hydraulic turbine having rated speed of 250 RPM is connected to a synchronous generator. In order to produce power at 50 Hz, the number of poles required in the generator is
	a) 6 b) 12 c) 16 d) 24
23.	एक मीटर की गतिमान कुंडली में 100 फेरे हैं और लंबाई व गहराई क्रमशः 10 मिलीमीटर तथा 20 मिलीमीटर है। इसे 200mT की एकरूप त्रिज्यीय फ्लक्स घनत्व में रखा गया है। कुंडली 50mA धारा का वहन करती है। कुंडली की बल आधूर्ण (टॉर्क) है। A moving coil of a meter has 100turns , and a length and depth of 10mm and 20mm respectively. It is positioned in a uniform radial flux density of 200mT . The coil carries a current of 50mA . The torque on the coil is
	a) $200 \ \mu Nm$ b) $100 \ \mu Nm$ c) $2 \ \mu Nm$ d) $1 \ \mu Nm$
24.	एक एकल कला पूर्ण नियंत्रित पूर्ण तरंग दिष्टकारी एक अलग से उत्तेजित डीसी मोटर को परिचालित कर रही है। डीसी मोटर की पश्च विद्युत वाहक बल $0.5~V/RPM$ स्थिर है। बिना उर्मि के आर्मेचर धारा $5~A$ है। आर्मेचर प्रतिरोध 2Ω है। दोनों अर्ध-चक्रों में 60^0 फायरन कोण के साथ परिवर्तक $240~V$ एकल कला AC स्रोत से काम करती है। ऐसे प्रचालन परिस्थितियों में मोटर का वेग है।
	A single phase fully controlled full wave rectifier is driving a separately excited DC motor. The DC motor has a back emf constant of 0.5 V/RPM. The armature current

Under this operating condition, the speed of the motor is

is 5 A without any ripple. The armature resistance is 2Ω . The convertor is working from 240 V, single phase AC source with a firing angle of 60^{0} in both half cycles.

- a) 158.12 RPM b) 168.34 RPM c) 304.17 RPM d) 408.23 RPM
- 25. स्लिप 's' पर परिचालित एक प्रेरण मोटर के लिए कुल शक्ति निर्गम और वाय अंतराल शक्ति का अनुपात है।

For an induction motor, operating at a slip 's', the ratio of gross power output to the airgap power is equal to

- a) $(1-s)^2$
- b)(1-s)
- c) $\sqrt{(1-s)}$
- d) $1-\sqrt{s}$
- 26. एक 3-कला डायोड सेत् दिष्टकारी को 400 V RMS, 50Hz, 3 कला AC स्रोत से पावर किया जाता है। अगर लोड पूर्णतया प्रतिरोधक है, तो शिखर तात्क्षणिक निर्गत वोल्टता... के बराबर है।

A 3-phase diode bridge rectifier is fed from a 400 V RMS, 50Hz, 3 Phase AC source. If the load is purely resistive, then peak instantaneous output voltage is equal to

- a) 400 V
- b) $400\sqrt{2} \text{ V}$
- c) $400\sqrt{(2/3)}$ V d) $400/\sqrt{3}$ V
- 27. किसी भी दिए गए वेग पर निर्धारित आर्मेचर धारा प्राप्त करने के लिए एक 50 kW, दिष्टधारा शंट मोटर को लोड किया जाता है। क्षेत्र नियंत्रण द्वारा निर्धारित वेग के 1.5 गुना वेग पर चलाए जाने पर मोटर द्वारा वितरित निर्गत शक्ति लगभगहै। A 50 kW, DC shunt motor is loaded to draw rated armature current at any given speed. When driven at 1.5 times the rated speed by field control, the output power delivered by the motor is approximately
 - a) 75 kW
- b) 50 kW

Bearing

- c) 100 kW
- d) 33 kW
- 28. शक्ति को मापने के लिए दो वॉटमापी तरीके में वॉट मीटर पाठ्यांक 10.5 kW और -2.5 kW हैं। कुल शक्ति और शक्ति गुणकहैं। In two wattmeter method to measure the power, the wattmeter reading are 10.5 kW and -2.5 kW. The total power and power factor are
 - a) 13.0 kW, 0.334 b) 13.0 kW, 0.684
- c) 8.0 kW, 0.52
- d) 8.0 kW, 0.334
- 29. चित्र उपयोगिता अनुपात 0.5 के साथ 1 kHz पर स्विच किया हुआ एक स्टेप डाउन अंतरायिक दर्शाता है। लोड धारा में शिखर-शिखर उर्मि......के करीब है। Figure shows a step down chopper switched at 1 kHz with a duty ratio of 0.5. The peak-peak ripple in the load current is close to

- a) 10A
- b) 0.5 A
- c) 0.125 A
- d) 0.25 A
- 30. 15 Nm की आरंभिक बल आघूर्ण (टॉर्क) को उत्पन्न करती एक विद्युत मोटर, शाफ्ट पर 7 Nm लोड बल आघूर्ण (टॉर्क) के साथ आरंभ होती है। आरंभ में अगर त्वरण 2 rad/s^2 है,

An Electric motor, developing a starting torque of 15 Nm, starts with a load torque of 7 Nm on its shaft. If the acceleration at start is 2 rad/s², the moment of inertia of the system is (neglecting viscous and Coulomb friction)

- a) 0.25 kg m^2
- b) 0.25 Nm²
- c) 4 kg m^2
- d) 4 Nm²
- 31. ट्रांसफॉर्मरों में निम्नलिखित कथनों में से कौन वैध हैं In transformers, which of the following statements is valid
 - a) एक विवृत परिपथ परीक्षण में ताम्र हानि होती है जबिक लघुपथ परीक्षण में कोर हानि होती है।

In an open circuit test, copper losses are obtained while in short circuit test, core losses are obtained.

- b) एक विवृत परिपथ परीक्षण में धारा उच्च शक्ति गुणक से लिया जाता है In an open circuit test, current is drawn at high power factor
- c) एक लघुपथ परीक्षण में धारा शून्य शक्ति गुणक से लिया जाता है In a short circuit test, current is drawn at zero power factor
- d) एक विवृत परिपथ परीक्षण में धारा निम्न शक्ति गुणक से लिया जाता है In an open circuit test, current is drawn at low power factor
- 32. प्रारंभ संधारित्र के साथ एक एकल कला प्रेरण मोटर के लिए निम्नलिखित में से कौन सा कथन वैध है

For a single phase induction motor with start capacitor, which of the following statements is valid

- a) शक्ति गुणक सुधार के लिए संधारित्र का उपयोग किया जाता है The capacitor is used for power factor improvement
- b) मुख्य कुंडलन टर्मिनल को व्युत्क्रमित कर घूर्णन की दिशा को बदला जा सकता है The direction of rotation can be changed by reversing the main winding terminals
- c) घूर्णन की दिशा को बदला नहीं जा सकता The direction of rotation cannot be changed
- d) सप्लाई टर्मिनल के अन्योन्य परिवर्तन द्वारा घूर्णन की दिशा को बदला जा सकता है The direction of rotation can be changed by interchanging the supply terminals.
- 33. एक एसी 230 V, 50 Hz, एकल-कला स्रोत पर चल रही निमज्जन तापक (प्रतिरोधक) के साथ जुड़े ऊर्जा मीटर का 1 घंटे का पाठ्यांक 2.3 kWh है। सप्लाई से तापक को हटा दिया जाता है और अब एक 150 Hz के 400V शिखर से शिखर वर्ग तरंग स्रोत के साथ जोड़ा जाता है। तापक द्वारा kW में क्षयित शक्ति..... होगी।

An energy meter connected to an immersion heater (resistive) operating on an AC 230 V, 50 Hz, single-phase source reads 2.3 kWh in 1 hour. The heater is removed from the supply and now connected to a 400V peak to peak square wave source of 150 Hz. The power in kW dissipated by the heater will be

- a) 3.478
- b) 1.739
- c) 2.100
- d) 0.870

34. एक 220 V DC मशीन एक जिनत्र के रूप में 200 V पर 20 A सप्लाई करता है। आर्मेचर प्रतिरोध 0.2Ω है। अगर समान टर्मिनल वोल्टता और धारा पर लेकिन फ्लक्स घनत्व को 10 प्रतिशत बढ़ाकर मशीन को मोटर की तरह चलाया जाए, तो मोटर वेग और जिनत्र वेग का अनुपात है।

A 220 V DC machine supplies 20 A at 200 V as a generator. The armature resistance is $0.2\,\Omega$. If the machine is now operated as a motor at the same terminal voltage and

current but with the generator speed is	flux density i	ncreased by 10%, th	en ratio of motor speed to
a) 0.87	b) 1.1	c) 1.02	d) 1.5
स्थिर बनाए रखते हुए, निर्धारित आवृत्ति और न लोड बल आघूर्ण (टॉर्क) The speed of a 4 pole while maintaining th constant. At rated fre RPM. Find the speed	, सप्लाई आवृत्यि 400 V की निध्य स्थिर है, तो 3 e induction mo he ratio of the quency of 50 3 at 30 Hz, if the	ते को बदलकर नियंत्रि ग्रिति बोल्टता पर इसव 30 Hz पर बेग का पता tor is controlled by v supply voltage to Hz and rated voltage cload torque is consta	arying the supply frequency the supply frequency (V/f) of 400 V its speed is 1440 nt.
a) 882 RPM	b) 864 RPM	c) 840 RPM	d) 828 RPM
एक चालक लौह उपकर पाठ्यांक क्रमशः A current of -8 + (6	ण के बीच -8 हैं। √2) sin (ωt + ii) a true RMS	+ $(6\sqrt{2})$ sin ($\omega t + 3$) 30°) A is passes thro	र्थ आरएमएस मीटर और (iii) 0^0) की धारा प्रवाह करती है। ugh three meters: (i) center oving iron instrument. The
a) 8, 6,10	b) 8, 6, 8	c) -8,10,10	d) -8, 2, 2
37. एक ट्रांसफॉर्मर में पूर्ण ल In a transformer, zero			है।
a) संभव नहीं Not possible b) इकाई शक्ति गुणव Possible at unit c) अग्रक शक्ति गुणव Possible at lead d) पश्चता शक्ति गुण Possible at lagg	y power factor ह लोड पर संभव ling power fact क लोड पर संभ	load म or load व	
चल रही है। अगर क्षेत्र जाता है, तो इसकी नई A 3-phase synchrono	धारा को स्थि शक्ति गुणक . us motor conr fits shaft load	र रखते हुए इसके शा है nected to AC mains l is reduced by half,	ांड और इकाई शक्ति गुणक पर फ्ट लोड को आधा कर दिया ोगी। is running at full load and with the field current held
a) इकाई/Unity			
b) अग्रक/Leading			
c) पश्चगामी/Laggir	ıg		
d) मशीन के प्राचल	पर निर्भर/Dep	endent on the machin	e parameters
20 ध्रुव (पोल) हैं। इस	सोपानी मोटर x, variable relu	का सोपान कोण ctance stepper motor	प्रत्येक रोटर व स्टेटर स्टैक में है। has 20 poles on each rotor

- a) 3 deg
- b) 6 deg
- c) 9 deg
- d) 18 deg
- 40. इकाई शक्ति गुणक पर एक एकल कला, $50 \, \mathrm{kVA}, 250 \, \mathrm{V} / 500 \, \mathrm{V}$, दो कुंडलन ट्रांसफॉर्मर की क्षमता पूर्ण लोड पर $95 \, \mathrm{y}$ प्रितशत है। अगर इसे $500 \, \mathrm{V} / 750 \, \mathrm{V}$ स्वतः ट्रांसफॉर्मर में पुनःसंरूपित किया जाता है, तो इकाई शक्ति गुणक पर इसकी नए निर्धारित लोड की क्षमता होगी।

A single-phase, 50 kVA, 250V / 500V, two winding transformer has an efficiency of 95 % at full load, unity power factor. If it is reconfigured as a 500V / 750V auto transformer, its efficiency at its new rated load at unity power factor will be

- a) 92.7 %
- b) 91.8 %
- c) 98.4 %
- d) 100 %
- 41. दिए गए चित्र में $10~\Omega$ पर एक शुद्ध प्रतिरोध में धारा तरंग रूप को दिखाया गया है। प्रतिरोध में क्षयित शक्ति है।

The current waveform in a pure resistor at 10 Ω is shown in given figure. Power dissipated in the resistor is

- a) 7.29 W
- b) 52.4 W
- c) 135 W
- d) 270 W
- 42. निम्नलिखित चित्र में तीन कुंडलियों को दिखाए गए अनुसार स्वप्रेरकत्व और अन्योन्य प्रेरकत्व के साथ जोड़ा गया है। चित्र में AB टर्मिनल के आरपार परिपथ का प्रभावी प्रेरकत्व है।

Three coils are connected as in the following figure with self-inductances and mutual inductances as indicated. The effective inductance of the circuit across the terminal AB in the figure, is

- a) 9 H
- b) 21 H
- c) 11 H
- d) 6 H

43. दिए गए चित्र में अग्रक शक्ति गुणक 0.844 पर 3-कला संतुलन स्रोत 1500W वितरित करता है। Ohm में Z_L लगभग......होगा। The 3-phase balanced source in the given figure delivers 1500W at a leading power

factor of 0.844, then the values of Z_L in Ohm is approximately

- a) 90 \angle 32.44 deg b) 80 \angle 32.44 deg c) 80 \angle -32.44 deg d) 90 \angle -32.44 deg
- 44. एक एकल कला ट्रांसफॉर्मर में जब 220~V, 50~Hz की सप्लाई की जाती है तो 50~W की भंवर धारा हानि होती है। अगर ट्रांसफॉर्मर को 330~V, 50Hz वोल्टता से जोड़ा जाए तो भंवर धारा हानि होगी।

A single phase transformer when supplied with 220 V, 50 Hz has eddy current loss of 50 W. If the transformer is connected to a voltage of 330 V, 50 Hz, the eddy current loss will be

- a) 168.75 W
- b) 112.5 W
- c) 75 W
- d) 50 W
- 45. एक एसी श्रेणी मोटर में emf है/In an AC series motor, the emf is
 - a) ब्रशों पर अधिकतम और दिक्परिवर्तन के अधीन कुंडलियों पर भी अधिकतम Maximum at the brushes and also maximum in the coils undergoing commutation
 - b) ब्रशों पर अधिकतम और दिक्परिवर्तन के अधीन कुंडलियों पर शून्य Maximum at the brushes and zero in the coils undergoing commutation
 - c) ब्रशों पर शून्य तथा दिक्परिवर्तन के अधीन कुंडलियों पर अधिकतम Zero at the brushes and maximum in the coils undergoing commutation
 - d) ब्रशों पर शून्य तथा दिक्परिवर्तन के अधीन कुंडलियों पर शून्य Zero at the brushes and zero in the coils undergoing commutation
- 46. निम्नलिखित आरेख में A और B के बीच समतुल्य प्रतिरोध क्या है? What is the equivalent resistance between A and B in the following diagram?

47. निम्नलिखित आरेख में A और B के बीच प्रभावी प्रतिरोध क्या है? What is the effective resistance between A and B in the following diagram

a) 1Ω b) $\sqrt{2} \Omega$ c) $1+\sqrt{3} \Omega$ d) $1+2\sqrt{3} \Omega$

48. एक स्थाई चुंबक चालन कुंडली उपकरण का प्रतिरोध R Ω है। अधिकतम धारा जो उपकरण के पूर्ण माप विक्षेपण धारा से 5 गुना अधिक है, को मापने के लिए अपेक्षित शंट प्रतिरोध क्या है?

Let the resistance of a permanent magnet moving coil instrument be R Ω . What is the shunt resister required to measure a maximum current which is 5 times the full scale deflection current of the instrument?

a) R Ω b) 0.25R Ω c) 0.5R Ω d) 0.75R Ω

49. एक चालक लौह उपकरण के अंदर धारा 20 प्रतिशत बढ़ा दी जाती है तो विक्षेपित बल आघूर्ण (टॉर्क) में कितनी प्रतिशत वृद्धि होगी?
If the current through a moving iron instrument is increased by 20%, what is the percentage increase in the deflecting torque?

a) 40 b) 25 c) 32 d) 44

- 50. निम्नलिखित तरंगों में किसमें न्यूनतम रूप गुणक है? Which of the following wave has a minimum form factor?
 - a) साइन तरंग/Sine wave
 - b) शून्य डीसी मान के साथ त्रिभुजाकार तरंग/Triangular wave with zero DC value
 - c) शून्य डीसी मान के साथ वर्ग तरंग/Square wave with zero DC value
 - d) पूर्ण तरंग दिष्टकारी साइन तरंग/Full wave rectified sine wave
- 51. तीन बोल्टता स्रोत हैं। बोल्टता स्रोत 1, 200V शिखर बोल्टता देता है; बोल्टता स्रोत 2, 100V शिखर देता है जो बोल्टता स्रोत 1 से 120 डिग्री पीछे है; और बोल्टता स्रोत 3, 100V शिखर देता है जो बोल्टता स्रोत 1 से 120 डिग्री आगे है। अगर ये बोल्टता स्रोतों और एक 1Ω प्रतिरोध को एक श्रेणी से जोड़ा जाए, तो प्रतिरोध में शक्ति-क्षय क्या है? There are three voltage sources. Voltage Source 1 gives 200V peak voltage; voltage Source 2 gives 100V peak which lags behind voltage Source 1 by 120 deg; and voltage Source 3 gives 100V peak which leads voltage Source 1 by 120 deg. If these voltage sources and a 1Ω resister are connected in series, what is the power dissipation in the resistor?

- a) 2000W
- b) 5000W
- c) 2670W
- d) 4000W
- 52. निम्नलिखित परिपथ में प्रतिरोध R1 में उत्पन्न ताप और R3 में उत्पन्न ताप का अनुपात है।

In the following circuit the ratio of heat produced in resister R1 to the heat produced in resister R3 is

- a) 25:10
- b) 25:18
- c) 20:14
- d) 1:4
- 53. जब एक डीसी मोटर अधिकतम शक्ति जनित करती है, तब अनुप्रयुक्त वोल्टता और पश्च emf का अनुपात है।

When a DC motor generates maximum power, ratio of applied voltage to back emf is

a) 1:1

- b) 2:3
- c) 2:1
- d) $\sqrt{2:1}$
- 54. एक शंट जिनत्र 250V पर 450A की लोड धारा देता है। आर्मेचर प्रतिरोध $0.01~\Omega$ है और शंट फाइल्ड प्रतिरोध $50~\Omega$ है। जिनत emf का परिकलन कीजिए।

A shunt generator delivers a load current of 450 A at 250 V. Armature resistance is 0.01 Ω and shunt filed resistance is 50 Ω . Calculate the emf generated.

- a) 254.55 V
- b) 254.5 V
- c) 245.5 V
- d) 245.45 V
- 55. एक डीसी जनित्र में जनित emf से सीधे तौर पर आनुपातिक है। In a DC generator, generated emf is directly proportional to -----
 - a) आर्मेचर धारा/Armature current
 - b) ध्रुव फ्लक्स/Pole flux
 - c) आर्मेचर समांतर पथों की संख्या/Number of armature parallel paths
 - d) उपर्युक्त सभी/All of the above
- 56. एक प्रेरण मोटर में अगर सप्लाई वोल्टता को आधा कर दिया जाए, तो आरंभिक बल आघूर्ण (टॉर्क) हो जाता है।
 In an induction motor, if the supply voltage is halved, the starting torque becomes
 - a) आधी/Half

- b) एक चौथाई/One fourth
- c) एक तिहाई/One third
- d) समान रहता है/Remains the same

- 57. चालक लौह ऐमीटर के मापन के लिए उपयोग किया जाता है।
 Moving iron ammeter is used for the measurement of

 a) डीसी धारा/DC current

 b) एसी धारा/AC current
 - c) (a) और (b) दोनों/Both (a) and (b) d) उपर्यक्त में से कोई नहीं/None of the above
- 58. एक एलसी परिपथ में अनुनाद आवृत्ति पर

In an LC circuit, at resonance frequency, the magnitude of

- a) धारिता प्रतिघात का परिमाण प्रेरणिक प्रतिघात से अधिक है Capacitive reactance is more than the inductive reactance
- b) प्रेरणिक प्रतिघात का परिमाण धारिता प्रतिघात से अधिक है Inductive reactance is more than the capacitive reactance
- c) धारिता प्रतिघात का परिमाण प्रेरणिक प्रतिघात के समान है Capacitive reactance is equal to the inductive reactance
- d) धारिता प्रतिघात और प्रेरणिक प्रतिघात का परिमाण स्वतंत्र है Capacitive reactance and inductive reactance are independent
- 59. निम्नलिखित कथन P1 और P2 पर विचार करें Consider the following statements P1 & P2

P1: अगर आधार चौड़ाई बढ़ाई जाती है, तो द्विध्रुवी ट्रांजिस्टर का वीटा घटता है। Beta of bipolar transistor reduces if base width is increased

P2: अगर आधार में अपमिश्रण सांद्रण बढ़ाई जाती है, तो द्विध्रुवी ट्रांजिस्टर का बीटा बढ़ता है।

Beta of bipolar transistor increases if doping concentration in the base is increased

- a) P1 और P2 गलत है/P1 & P2 are False
- b) P1 और P2 सही है/P1 & P2 are True
- c) P1 गलत है और P2 सही है/P1 is False & P2 is True
- d) P1 सही है और P2 गलत है/P1 is True & P2 is False
- 60. एक द्विआधारी अर्ध-व्यवकलक के लिए निर्गम D (A minus B) और X (borrow) हेतु तर्क व्यंजकों के सही सेट हैं।
 For a binary half-substractor, the correct set of logical expressions for outputs D (A minus B) and X (borrow) are
 - a) $D = AB + \bar{A}B$, $X = \bar{A}B$
- b) D= AB+ \bar{A} B, X= B+ \bar{A} B
- c) $D = \overline{A}B + A\overline{B}$, $X = \overline{A}B$
- d) D= $A\overline{B}+AB+\overline{A}B$, X= $\overline{A}B+A\overline{B}$
- 61. ताँबा और शुद्ध सिलिकन को तापित किया जाता है। निम्नलिखित में कौन सही है: Copper and pure silicon are heated. Which of the following is true:
 - a) ताँबे की प्रतिरोधकता में वृद्धि होती है और सिलिकन में कटौती Resistivity of Copper increases and Silicon decreases
 - b) ताँबे और सिलिकन दोनों की प्रतिरोधकता में वृद्धि होती है Resistivity of both Copper and Silicon increase
 - c) ताँबे और सिलिकन दोनों की प्रतिरोधकता में कटौती होती है Resistivity of both Copper and Silicon decrease
 - d) ताँबे की प्रतिरोधकता में कटौती होती है और सिलिकन में वृद्धि Resistivity of Copper decreases and Silicon increases

- 62. अगर तर्क समीकरण $[X + Z\{\bar{Y} + (\bar{Z} + X\bar{Y})\}]\{\bar{X} + \bar{Z}(X + Y)\} = 1$ में X=1, तब..... If X=1 in the logic equation $[X + Z\{\overline{Y} + (\overline{Z} + X\overline{Y})\}]\{\overline{X} + \overline{Z}(X + Y)\} = 1 \text{ then}$
 - a) Y = Z b) $Y = \overline{Z}$
- c) Z = 1
- d)Z = 0
- $63.\,\mathrm{n}$ —चैनल MOSFET के निर्गम को गेट से लघुकृत किया गया है ताकि $V_{DS}=V_{GS}$ । MOSFET की देहली वोल्टता (V_T) , 1 V है। अगर $V_{GS}=2$ V के लिए निर्गम धारा (I_D) , 1 mA है, तो V_{GS} =3 V के लिए I_D है। The drain of an n - channel MOSFET is shorted to the gate so that $V_{DS} = V_{GS}$. The threshold voltage (V_T) of MOSFET is 1 V. If the drain current (I_D) is 1 mA for V_{GS} = 2 V, then for $V_{GS} = 3$ V, I_D is
 - a) 2 mA
- b) 3 mA
- c) 9 mA
- 64. आदर्श संक्रियात्मक प्रवर्धक (Op-Amp) परिपथ में Vo..... In the circuit of the ideal Op-Amp, Vo is

- a) -1 V
- b) 2 V
- c) + 1 V
- d) +15 V
- 65. चित्र में दर्शाए गए आदर्श संक्रियात्मक प्रवर्धक (Op-Amp) परिपथ के लिए Vo..... है। For the ideal Op-Amp circuit shown in the figure, Vo is

- a) -2 V
- b) -1 V
- c) -0.5 V
- d) 0.5 V
- 66. एक 8085 सूक्ष्म संसाधित्र आधारित प्रणाली 4K×8bit RAM का प्रयोग करती है जिसका प्रारंभिक पता AA00 H है। इस RAM में अंतिम बाइट का पता है। An 8085 microprocessor based system uses a 4K×8bit RAM whose starting address is AA00 H. The address of the last byte in this RAM is
 - a) 0FFF H
- b) 1000 H
- c) B9FF H
- d) BA00 H

- 67. चिह्न बिट X और Y युक्त दो 2 के पूरक संख्याओं को जोड़ा जाता है और परिणाम चिह्न बिट Z है। तब, अधिप्रवाह की उपस्थिति को बुलीय फलन \dots द्वारा निर्दिष्ट किया जाता है। Two 2's complement numbers having sign bits X and Y are added and the sign bit of the result is Z. Then, the occurrence of overflow is indicated by the Boolean function.
 - a) XYZ
- b) XYZ
- c) $XY\overline{Z}++\overline{X}\overline{Y}Z$
- d) $XY + \overline{X}Y$
- - a) CC-CB
- b) CE-CB
- c) CB-CC
- d) CE-CC
- 69. डार्लिंगटन युग्म के प्रत्येक ट्रांजिस्टर का hfe =100 है। क्षरण धारा को नकारते हुए, मिश्र ट्रांजिस्टर का समग्र hfe है। Each transistor in the Darlington pair has hfe =100. The overall hfe of the composite
 - transistor, neglecting the leakage currents is
 - a) 10000
- b) 10001
- c) 10100
- d) 10200
- 70. एक 6-बिट सोपानी (लैंडर) डी/ए परिवर्तक का अधिकतम निर्गम (आउटपुट) 10V है। निवेश (इनपुट) 101001 के लिए निर्गम लगभग है। A 6-bit ladder D/A converter has a maximum output of 10V. The output for input 101001 is approximately
 - a) 4.2
- b) 6.5
- c) 5.5
- d) 9.2
- 71. तीन प्रकार के 8 बिट एडीसीयों (i) उत्तरोत्तर संनिकटन, (ii) द्वि प्रवणता और (iii) समांतर तुलिनित्र के लिए कालद चक्रों में अधिकतम रूपांतरण काल क्रमशः......हैं। Maximum conversion time in clock cycles for three types of 8 bit ADCs (i) Successive approximation, (ii) Dual slope and (iii) Parallel comparator are respectively
 - a) 8,512,1
- b) 8, 256, 4
- c) 16, 256, 2
- d) 256, 8, 1
- 72. नीचे दिए गए बहुविध परिपथ द्वारा कार्यान्वित तर्क फलन....है। (ग्राउंड का संकेत तर्क "0" से है)

The logic function implemented by the multiplexer circuit below is (ground implies a logic "0")

- a) F = AND(P,Q)
- b) F = OR(P,Q)
- c) F = XNOR(P,Q)
- d) F = XOR(P,Q)

73. नीचे दिए गए परिपथ में, आदर्श जेनर डायोड का जानु धारा 10 mA है। RL के आरपार 5 V बनाए रखने के लिए Ω में RL का न्यूनतम मान है। In the circuit shown below, the knee current of the ideal Zener diode is 10 mA. To maintain 5 V across R_L , the minimum value of R_L in Ω is

- 74. एक सूक्ष्म संसाधित्र का एएलयू 8-बिट दो के पूरक संकार्य प्रचालन का निष्पादन करता है। क्या होता है जब 7AH A2H प्रचालन का निष्पादन किया जाता है?

 The ALU of a microprocessor performs operations of 8-bit two's complement operands. What happens when the operation 7AH A2H is performed?
- a) परिणाम = D8H, अधिप्रवाह और ऋणात्मक चिह्नक सेट होता है Result = D8H, Overflow and negative flags set.
- b) परिणाम = D8H, ऋणात्मक चिह्नक सेट होता है Result = D8H, Negative flag is set.

a) 125

- c) परिणाम = D8H, कोई चिह्नक सेट नहीं होता है Result = D8H, No flags set.
- d) परिणाम = 28H, अधिप्रवाह चिह्नक सेट होता है Result = 28H, Overflow flag set.
- 75. x के संबंध में Sin(x) का द्वितीय अवकलज.....है। Second Derivative of Sin(x) with respect to x is (a) Sin(x) (b) cos(x) (c) -sin(x) (d) -cos(x)
- 76. एक समबाहु त्रिभुज में सबसे बड़े कोण की माप......है। In an equilateral triangle, the measure of the largest angle is
- (a) 120° (b) 90° (c) 60° (d) 180°
- 77. अगर $\begin{vmatrix} x & 3 \\ 5 & 2x \end{vmatrix} = \begin{vmatrix} 5 & -4 \\ 5 & 3 \end{vmatrix}$ तो, 'x' का मान होगा।

 The value for x, if $\begin{vmatrix} x & 3 \\ 5 & 2x \end{vmatrix} = \begin{vmatrix} 5 & -4 \\ 5 & 3 \end{vmatrix}$ is?

 (a) 5, -5

 (b) 6, -6

 (c) -5, -5

 (d) -6, -6
- 78. (1,1) पर वक्र $y = x^3$ की प्रवणता (स्लोप) का पता लगाएं Find the slope of the curve $y = x^3$ at (1,1)
 - (a) 3 (b) 1 (c) 6 (d) 2

79. अगर $x = a \cos^3 t$, $y = a \sin^3 t$, तब $\frac{dy}{dx}$ $\frac{a}{\sqrt{2}}$ /If $x = a \cos^3 t$, $y = a \sin^3 t$, then $\frac{dy}{dx}$ is?

(a) tan t

(b) -tan t

(c) cot t

 $(d) - \cot t$

80. दो अंको का लगुत्तम समापवर्तक (एलसीएम) 48 और महत्तम समापवर्तक (एचसीएफ) 6 है। इनमें से एक अंक 24 है, तो दूसरा अंक है।

LCM of two numbers is 48 and HCF is 6. One of the numbers is 24, then the other number is

(a) 2

(b) 4

(c) 12

(d) 48

तकनीकी सहायक (विद्युत) - पद सं. 1429 TECHNICAL ASSISTANT (ELECTRICAL) – POST NO.1429

1. निम्निलिखित परिपथ में, यदि स्विच B स्थिति में है तो एमीटर का धारा परास कितना है? मीटर का पूर्ण स्केल विक्षेप $50\mu A$ है तथा मीटर का प्रतिरोध 100Ω है। T_1 तथा T_2 टर्मिनल हैं।

In the following circuit, what is the current range of the ammeter if the switch is at position B. Full scale deflection of the meter is $50\mu A$ and resistance of the meter is 100Ω . T_1 and T_2 are the terminals.

- a) 5055 µA
- b) 5000 μA
- c) 5050 µA
- d) $5005 \mu A$

2. निम्निलिखित परिपथ में, 1Ω प्रतिरोधक में क्षयित शिक्त शून्य करने के लिए जोड़े जानेवाले प्रतिरोधक का मान कितना होना चाहिए?

In the following circuit, what is the value of resistance to be added to make the power dissipated in the 1Ω resistor zero.

- a) 1.5Ω प्रतिरोधक के साथ $0.5~\Omega$ श्रेणी में/ $0.5~\Omega$ in series with 1.5Ω resistor
- b) 3Ω प्रतिरोधक के साथ $15~\Omega$ श्रेणी में/ $15~\Omega$ in series with 3Ω resistor
- c) 1.5Ω प्रतिरोधक के साथ 3Ω समांतर में/ 3Ω in parallel with 1.5Ω resistor
- d) 3Ω प्रतिरोधक के साथ 6Ω समांतर में/ 6Ω in parallel with 3Ω resistor
- 3. शून्यप्रारंभिकआवेशमानतेहुएनिम्नलिखितपरिपथमें, संधारित्रोंकेआवेशनकेलिएआवश्यकऊर्जाकितनीहै? In the following circuit, what is the energy required to fully charge the capacitors, assuming zero initial charge.

- a) 62.5 milli Joule
- b) 125 milli Joule
- c) Zero Joule
- d) 250 milli Joule

4. एक आरएलसी परिपथ में एक प्रेरक $(0.1~{\rm H})$, एक संधारित्र $(100\mu{\rm F})$ तथा एक प्रतिरोधक $(10^6\Omega),1{\rm V}$ के डीसी पावर सप्लाई से एक श्रेणी में जुड़े हैं। संधारित्र तथा प्रेरक का पराश्रयी प्रतिरोध क्रमशः $10^6\Omega$ व 10Ω है। स्थाई अवस्था में, परिपथ में क्षयित करीबन शक्ति कितनी है?

An RLC circuit has an inductor (0.1 H), a capacitor (100 μ F) and a resistor (10⁶ Ω) connected in series to a dc power supply of 1V. The parasitic resistance of the capacitor and inductor are 10⁶ Ω and 10 Ω respectively. Under steady state conditions, what is the approximate power dissipated in the circuit?

- a) 2µW
- b) 1 μW
- c) 0.5 µW
- d) 0.2 µW
- 5. $10 \Omega a$ $5\Omega के दो प्रतिरोधक श्रेणी में जुड़े हैं। प्रथम प्रतिरोधक का प्रतिरोध ताप गुणांक <math>0.004 \Omega / ^{\circ} C$ तथा वहीं दूसरे का $0.005 \Omega / ^{\circ} C$ ($0 ^{\circ} C$ में) है। $0 ^{\circ} C$ में प्रतिरोधकों के युग्म का प्रभावी प्रतिरोध ताप गुणांक कितना है?

Two resistors of $10~\Omega$ and 5Ω are connected in series. Temperature coefficient of resistance of the first resistor is $0.004~\Omega/^{\circ}C$ and that of the second resistor is $0.005\Omega/^{\circ}C$ (at $0~^{\circ}C$). What is the effective temperature coefficient of resistance of the combination of resistors at $0~^{\circ}C$.

- a) $0.0043 \ \Omega/^{\circ}C$
- b) $0.0048 \,\Omega/^{\circ}C$
- c) $0.0052 \Omega/^{\circ}C$
- d) $0.0037 \,\Omega/^{\circ}C$
- 6. यदि प्रतिरोधक 1Ω , 2Ω व 3Ω के तारक संबंधन प्रतिरोध R_1 , R_2 व R_3 के डेल्टा संबंधन के तुल्य है, तो $R_1+R_2+R_3$ क्या है?

If the star connection of resistor 1Ω , 2Ω and 3Ω is equivalent to the delta connection of resistor R_1 , R_2 and R_3 , what is $R_1+R_2+R_3$?

- a) $121/6 \Omega$
- b) $625/3 \Omega$
- c) 6 Ω
- d) 11Ω

7. निम्निलिखित सिग्नलों को एक-एक कर तप्त वायर ऐमीटर पर लगाने से, कौन-सा अधिकतम विक्षेप उत्पन्न करेगा?

The following signals are individually applied to a hot wire ammeter. Which one will produce maximum deflection?

- a) 10 V शिखर तथा 50 Hz आवृत्ति के साथ ज्यावक्रीय वोल्टता Sinusoidal voltage with 10 V peak and 50 Hz frequency
- b) 10 V शिखर तथा 100 Hz आवृत्ति के साथ ज्यावक्रीय वोल्टता Sinusoidal voltage with 10 V peak and 100 Hz frequency
- c) 10 V शिखर तथा 100 Hz आवृत्ति के साथ वर्गतरंग सिग्नल Square wave signal with 10 V peak and 100 Hz frequency
- d) (a) व(b)दोनों/Both (a) and (b)
- 8. एक ज्यावक्रीय वोल्टता में 20V का शीर्ष मान तथा 24s की कालाविध है। शून्य समय में, तरंग का आयाम14.14V है। 1s में आयाम कितना है?

A sinusoidal voltage has a peak value of 20V and time period of 24s. At time zero, the amplitude of the wave is 14.14V. What is the amplitude at 1 s?

- a) 7.07 V
- b) 17.3 V
- c) $20/\sqrt{2}V$
- d) उपर्युक्त में से कोई नहीं/None of the above

9. निम्निलिखित परिपथ में, ऐमीटर द्वारा दर्शाई गई धारा 2A है। परिपथ में निम्निलिखितमें से कौन समस्या बनने की संभावना है?

In the following circuit, current read by the ammeter is 2A. Which of the following is a likely trouble in the circuit?

- a) 2Ω प्रतिरोध खुला है/ 2Ω resistor isopen
- b) 4Ω प्रतिरोध ख्ला है/ 4Ω resistor is open
- c) 6Ω प्रतिरोध ख्ला है/ 6Ω resistor is open
- d) 12Ω प्रतिरोध ख्ला है/ 12Ω resistor is open
- 10. एक कुंडली का Q गुणक 5है। यदि कुंडली में क्षियित ऊर्जा 10J है, तो कुंडली में भंडारित अधिकतम ऊर्जा कितनी होगी?

Q factor of a coil is 5. If energy dissipated in the coil /cycle is 10J, what is the maximum energy stored in the coil?

- a) 25π
- b) $25/\pi$
- c) 20π
- d) $\pi/20$
- 11. एक प्रेरक को 62.8Ω प्रतिरोध के साथ श्रेणी में400~V,~100~Hz सप्लाई से जोड़ा गया है। यदि परिपथ का पावर गुणांक $\frac{1}{\sqrt{2}}$ है, तो प्रेरकता कितनी है?

An inductor is connected in series with a 62.8 Ω resistor across a 230 V, 50 Hz supply. If the power factor of the circuit is $\frac{1}{\sqrt{2}}$, what is the inductance?

- a) 0.1 H
- b) 0.2 H
- c) 0.3 H
- d) 0.4 H

12. निम्नलिखित परिपथ मेंदिखाए गए A व B टर्मिनलोंके अनुसार थेवेनिन समतुल्य परिपथ में कितने प्रतिरोध का उपयोग किया जाना है?

What is the resistance to be used in the Thevenin equivalent circuit as seen from the terminals A and B of the following circuit?

- a) $3/10\Omega$
- b) $5/10\Omega$
- c) $7/10\Omega$
- d) $9/10 \Omega$

13. एक वोल्टता स्रोत(2+3j) V तथा दो प्रतिबाधाएं (2+j) Ω व (1+3j) Ω श्रेणी में जोड़े गए हैं। (1+3j) Ω के आर-पार प्रतिबाधा वोल्टता कितनीहै?

A voltage source (2 + 3j) V and two impedances (2 + j) Ω and (1 + 3j) Ω are connected in series. What is the voltage across $(1+3j)\Omega$ impedance.

- a) (2-j)/5
- b) (3 + 11j)/5
- c) (4-j)/5
- d) 12j/5

14. एक 5V DC सप्लाई, 1/(2j) Ω (50 Hz पर मापित) की प्रतिबाधा तथा 2 Ω प्रतिरोध एक श्रेणी में जोड़े गए हैं। स्थाई दशा में परिपथ से बहती धारा कितनी है?

A 5V DC supply, an impedance of 1/(2j) Ω (measured at 50 Hz) and a 2 Ω resistor are connected in series. Under steady state, what is the current through the circuit?

- a) 2.5 A
- b) 2 A
- c) 1.5 A
- d) 0A

15. दो कुंडिलयां एक श्रेणी में इस तरह से जुड़े हैं मानो इनके बीच कोई फ्लक्स बंधता (लिंकेज) नहीं है तथा कुल प्रेरकत्व को मापा गया है। जब उन्हें इस प्रकार जोड़ा जाता है, िक उनके mmfsएक दूसरे के विपरीत हों, तब कुल प्रेरकत्व 0.2 H कम हो जाता है।यदि प्रेरकत्व के गुणनफल 0.09हैं, तो उनके बीच का युग्मन मापांक कितना है?

Two coils are connected in series such that there is no flux linkage between them and the total inductance is measured. When they are connected such that their mmfs are opposing each other, the total inductance reduces by 0.2 H. If the product of the inductances are 0.09, what is the coefficient of coupling between them.

- a) 0.03
- b) 0.9
- c) 0.33
- d) 0.1
- 16. जब दो प्रेरकत्वों को mmfs के अन्योन्यक्रिया के बिना एक ही श्रेणी में जोड़ा जाता है, तब उनका कुल प्रेरकत्व 0.4H है। जब ये दोनों इस तरह श्रेणीबदध हों कि

When two inductances are connected in series with no interaction of mmfs, the total inductance is 0.4H. When they are connected in series with

- (i) फील्ड एक दूसरे से सहयोग करते हैं, तब कुल प्रेरकत्व 0.2 H है Fields aiding each other, total inductance is 0.2 H
- (ii) फील्ड एक दूसरे काविरोध करते हैं, तब कुल प्रेरकत्व0.1 H है Fields opposing each other, total inductance is 0.1 H

अन्योन्य प्रेरकत्व के परिमाण को (i) व (ii) में समान अनुमानित करते हुए, अन्योन्य प्रेरकत्व का आकलन करें।

Assuming magnitude of mutual inductance is same in (i) and (ii), calculate the mutual inductance.

- a) 0.125 H
- b) 0.067 H
- c) 0.018 H
- d) 0.028 H

- 17. एक निम्न पारक फिल्टर बनाने के लिए $1~\mathrm{k}\Omega$ प्रतिरोधक तथा $0.1~\mathrm{H}$ प्रेरक का उपयोग किया जाता है। कौन-सी आवृत्ति में फिल्टर लिंध $3~\mathrm{dB}$ गिरेगी?
 - 1 k Ω resistor and 0.1 H inductor are used to construct a low pass filter. At what frequency the filter gain falls by 3 dB?
 - a) 10000 Hz
 - b) $5000/\pi \, Hz$
 - c) 500π Hz
 - d) $500/\pi$ Hz
- 18. एक फिल्टर की निर्गत शक्ति 2 W तथा निवेशित शक्ति 200 W है। dB में इसका क्षीणन कितना है? The output power of a filter is 2 W and the input power is 200 W. What is the attenuation in dB.
 - a) 10
 - b) 20
 - c) 100
 - d) 3
- 19. एक 20V सेल, $1k\Omega$ प्रतिरोधक तथा $9k\Omega$ का एक लोड प्रतिरोधक एक श्रेणी में बंधित हैं। लोड प्रतिरोधक का टर्मिनल A व B मानें। परिपथ के ट्रबलशूटिंग (समस्या प्ररोही) के लिए, लोड प्रतिरोधक को निकाला जाता है तथा शेष परिपथ को A व Bके बीच नॉर्टन समतुल्य परिपथ में दर्शाया जाता है। इस निरूपण के लिए कितने प्रतिरोध मान का उपयोग किया जाना है?
 - A 20V cell, a $1k\Omega$ resistor and a load resistor of $9k\Omega$ are connected in series. Let the terminals of the load resistor be A and B. For troubleshooting the circuit, the load resistor is removed and the remaining circuit is represented using a Norton equivalent circuit between A and B. What is the resistance value that has to be used for this representation?
 - a) $0.9 \text{ k}\Omega$
 - b)10 k Ω
 - c) 1 k Ω
 - d) 9 k Ω

- 20. 10A के धारा स्रोत को 1Ω , 2Ω , व 3Ω मान के तीन प्रतिरोधकों के समांतर संयोजन से जोड़ा गया है। एक ऐमीटर, धारा स्रोत से श्रेणीबद्ध है तथा दूसरा ऐमीटर 1 Ω प्रतिरोध से जुड़ा हुआ है। प्रथम व दूसरे ऐमीटरों के बीच के रीडिंग का अनुपात कितना होगा? ऐमीटर के लिए शून्य प्रतिबाधा अनुमानित करें।

 A current source of 10A is connected to the parallel combination of three resistors of values
 - A current source of 10A is connected to the parallel combination of three resistors of values 1Ω , 2Ω , and 3Ω . One ammeter is connected in series with the current source and a second ammeter is connected with the 1Ω resistor. What is the ratio of the readings between the first and second ammeters? Assume zero impedance for the ammeters.
 - a) 10:6
 - b) 11:5
 - c) 11:6
 - d) 10:1

21. वृतीय परिक्षेत्र के दो वायर समांतर में जुड़े हैं। उनकी प्रतिरोधकता 3:4, लंबाई 1:2तथा व्यास 2:1के अनुपात में हैं। यदि संयोजन को वोल्टता स्रोत से जोड़ा जाता है, तो प्रतिरोधकों के बीच से गुज़रती धारा का अनुपात कितना है?

Two wires of circular cross section are connected in parallel. Their resistivities are in the ratio 3:4, lengths are in the ratio 1:2 and diameters are in the ratio 2:1. If the combination is connected to a voltage source, what is the ratio between the currents passing through the resistors.

- a) 3:4
- b) 1:2
- c) 16:3
- d) 32:3
- 22. चुंबकीय प्रेरक बल की इकाई कितनी है?

What is the unit of magneto motive force?

- a) टेस्ला/Tesla
- b) ऐम्पियर टर्न/ampere-turn
- c) वेबर/weber
- d) वोल्ट टर्न/Volt-turn
- $23.\ 0.5 \mathrm{m}$ लंबाई का एक चालक उतनी ही लंबाई के $2\ \mathrm{Wb/m^2}$ फलक्स घन्त्व के समान चुंबकीय क्षेत्र में आगे बढ़ता है। जब चालक हर $2\mathrm{s}$ समय में $10\mathrm{m}$ दूरी तय करता है, चालक में प्रेरित वोल्टता $2.5\mathrm{V}$ है। गित की दिशा तथा फलक्स लाइन की दिशा के बीच का कोण कितना है?

A conductor of length 0.5m moves in a uniform magnetic field of flux density 2 Wb/m²spanning its length. When the conductor moves 10m distance in every 2s time, the voltage induced in the conductor is 2.5V. What is the angle between the direction of motion and the direction of the flux lines?

- a) 20°
- b) 30°
- c) 45°
- d) 60°

24. एक आरएलसी श्रेणी परिपथ, परिवर्ती आवृत्ति में ज्यावक्रीय वोल्टता जिनत्र से फीड िकया जाता है। वोल्टता का RMS मान 200V है। वोल्टता जिनत्र की आवृत्ति अति िनम्न मान से अति उच्च मान में बदलती जाती है तथा स्रोत से ली गई शिक्त का मापन वाटमीटर द्वारा िकया जाता है। शिक्त को आवृत्ति का फलन मानते हुए प्लॉट िकया जाता है। शिक्त बनाम आवृत्ति वक्र एक शीर्ष दर्शाता है। शिक्त का शीर्ष मान िकतना है? प्रेरकता = 40mH, संधारिता= 1μF, प्रतिरोध = 10Ω

An RLC series circuit is fed with a sinusoidal voltage generator with variable frequency. RMS value of the voltage is 200V. The frequency of the voltage generator is changed from a very low value to very high value and the power drawn from the source is measured using a wattmeter. The power is plotted as a function of frequency. The power vs frequency curve shows a peak. What is the peak value of the power? Inductance = 40mH, Capacitance = $1\mu\text{F}$, Resistance = 10Ω .

- a) 2 kW
- b) 4 kW
- c) 7 kW
- d) 10 kW
- 25. एक संधारित्र को 1 Hz की आवृत्ति के ज्यावक्रीय वोल्टता स्रोत के साथ जोड़ा जाता है। समय t₁सेकंड के लिए ऊर्जा संधारित्र में जाती है तथा समय t₂सेकंड के लिए स्रोत की ओर वापस जाती है। यह प्रक्रिया समय-समय पर दोहराई जाती है। स्थाई अवस्था में t₁व t₂का मान कितना है?

A capacitor is connected to a sinusoidal voltage source of frequency 1 Hz. Energy flows in to the capacitor for a time t_1 seconds and flows back to the source for a time t_2 seconds. This process repeats periodically. Under steady state conditions, what is the value of t_1 and t_2

- a) 0.25s, 0.25sक्रमशः/respectively
- b) 0.5s, 0.5s क्रमशः/respectively
- c) 1s, 1s क्रमशः/respectively
- d) 2s, 2s क्रमशः/respectively
- 26. धनात्मक आवेश Qसे एक दूरी पर वैद्युत तीव्रता का मापन किया जाता है। आधी दूरी पर समान वैद्युत तीव्रता कायम रखने हेतु मूल आवेश में और अधिक कितना आवेश जोड़ना पड़ेगा?

Electrical intensity at a distance from a positive charge Q is measured. What extra charge to be added to the original charge to keep the same electrical intensity at half the distance?

- a) 4Q
- b) 3Q
- c) 2 Q
- d) Q

- 27. एक डीसी मोटर का आर्मेचर कम करने के लिए लैमिनेट (पटलित) किया जाता है। The armature of a DC motor is laminated to reduce
 - a) ताम्र हानि/Copper loss
 - b) भंवर धारा हानि/Eddy current loss
 - c) शैथिल्य (हिसटेरिसिस) हानि/ Hysteresis loss
 - d) (b) व (c)दोनों/Both (b) and (c)
- 28. एक उभयनिष्ट उत्सर्जक ट्रांजिस्टर प्रवर्धक का उत्सर्जक बाइपास धारिता जैसे बढ़ता है तो प्रवर्धक के ac लिंध में क्या होता है?

As the emitter by pass capacitance of a common emitter transistor amplifier increases, what happens to the ac gain of the amplifier?

- a) बढता है/Increases
- b) घटता है/Reduces
- c) पहले बढ़ता है, फिर घटता है/First increases and then reduces
- d) समान रहता है/Remains same
- 29. एक आदर्श प्रचालनात्मक प्रवर्धक में, अप्रतीपन टर्मिनल को ग्राउंड किया जाता है तथा प्रतीपन टर्मिनल को $1000\mu F$ की धारिता के संधारित्र के ज़रिए आउटपुट से जोड़ा जाता है। 15V के डीसी निवेश वेल्टता स्रोत को $1k\Omega$ के प्रतिरोध के ज़रिए प्रतीपन टर्मिनल से जोड़ा जाता है। op-amp सप्लाई +/-15V से है। निर्गम में आरंभिक वोल्टता शून्य है। समय के बीतने के साथ निर्गम का क्या होता है?

In an ideal operational amplifier, the non-inverting terminal is grounded and the inverting terminal is connected to the output through a capacitor of capacitance $1000\mu F$. A dc input voltage source of 15V is connected to the inverting terminal through a resistor of $1k\Omega$. The op-amp supply is from +/-15V. Initial voltage at the output is zero. What happens to the output as time progresses?

- a) +15V में संतृप्तहोता है/Saturates at +15V
- b) -15V में संतृप्त होता है/Saturates at -15V
- c) शून्य रहता है/Remains zero
- d) उपर्युक्त में से कोई नहीं/None of the above

30. एक कार शून्य गति से शुरू करती है तथा समान त्वरण के साथ6िमनट में 60km/hr की गति तक पहुंचती है। अगले 20 मिनट के लिए कार 60km/hr की समान गित में चलती है और फिर 10 मिनट में समान मंदन के साथ शून्य गतिमें पहुंच जाती है। कार द्वारा तय की गई दूरीका परिकलन करें।

A car starts from zero speed and uniformly accelerates to a speed of 60km/hr in 6 minutes. For next 20 minutes the car runs at a constant speed of 60km/hr and then uniformly decelerates to zero speed in 10 minutes. Compute the distance travelled by the car.

- a) 16.8km
- b) 28km
- c) 36km
- d) 20km
- 31. सार्व अंतर 3 के साथ तीन संख्याएं a_1 , a_2 व a_3 अंकीय श्रेढ़ी में हैं। यदि $a_1 + a_2 + a_3$, 15है, तो a_1 व a_3 का ज्यामितीय माध्य कितना है?

Three numbers a_1 , a_2 and a_3 are in arithmetic progression with a common difference 3. If $a_1 + a_2 + a_3$ is 15, what is the geometric mean of a_1 and a_3 ?

- a) 4
- b) 5
- c) 8
- d) 16
- 32. 10छात्रों की औसतन आयु 18है। जब एक नए छात्र को इस ग्रुप में जोड़ा जाता है, तब औसत घटकर17में हो जाता है। नए छात्र की आयु कितनी है?

Average age of 10 students is 18. When a new student is added to the group, the average reduces to 17. What is the age of the new student?

- a) 17 वर्ष/years
- b) 10 वर्ष/years
- c) 7 वर्ष/years
- d) 14 वर्ष/years
- 33. $x^2 + ax + b = 0$ समीकरण का एक मूल2है। दूसरा मूल कितना है? One root of the equation $x^2 + ax + b = 0$ is 2. What is the other root?
 - a) a/2
 - b) b/2
 - c) 2b
 - d) b-2

34. यदि एक त्रिकोण के कोण 1:2:7के अनुपात में हैं, तो त्रिकोण के दो कोण का योगनिम्नलिखित में से कितना होगा?

If the angles of a triangle are in the ratio1:2:7, which of the following is the sum of two angles of the triangle?

- a) 54°
- b) 90°
- c) 38°
- d) 160°
- $35. \frac{1+2sinx cosx}{sinx+cosx}$ व्यंजक निम्नलिखित में से किसके बराबर है?

The expression $\frac{1+2sinx cosx}{sinx+cosx}$ is equal to which of the following?

- a) sinx + cosx
- b) sinx cosx
- c)1 cosx
- d) 1 sinx
- 36. लाइन y=2x+3, y axis, x axis तथा लाइनx=4से परिबद्ध क्षेत्र का क्षेत्रफल कितना होगा। सभी लंबाई cm में हैं।

What is the area of the region bounded by the line y=2x+3, y axis, x axis and the line x=4. All lengths are in cm.

- a) 44cm²
- b) 28cm²
- c) 32cm²
- d) 16cm²
- $37. \sin(\pi t) > 0$ तथा $\cos(\pi t) < 0$ हैं निम्नलिखित में से कौन-सा सही है?

 $Sin(\pi t) > 0$ and $Cos(\pi t) < 0$ which of the following is true

- a) $0 < t < \frac{1}{2}$
- b) $\frac{1}{2} < t < 1$
- c) $1 < t < \frac{3}{2}$
- d) $\frac{3}{2} < t < 2$

38. एक डी सी मशीन का आर्मेचर से निर्मित है। The armature of a dc machine is made of
a) तांबा/Copper
b) सिलिकन इस्पात/Siliconsteel
c) लोह कोबाल्ट/Ironcobalt
d) b या c / b or c
39. एक डीसी जिनत्र में कंपोल की धुवता है। The polarity of compoles in a dc generator is
a) मुख्य पोल के समान ही, घूर्णन की दिशा के आगे
Same as that of the main pole ahead in the direction of rotation
b) मुख्य पोल के समान ही, घूर्णन की दिशा के पीछे
Same as that of the main pole behind in the direction of rotation
c) मुख्य पोल के विपरीत, घूर्णन की दिशा के आगे
Opposite to that of the main pole ahead in the direction of rotation
d) इसमें से कोई नहीं/None of these
40. लोड के बढ़ने पर किस मोटर की गति बढ़ेगी? The speed of which motor will increase as the load increases a) शंट/Shunt
b) श्रेणी/Series
c) विभेदी सम्मिश्र/Differentially compound
d) संचयी सम्मिश्र/Cumulatively compound
41. एक डी सी शंट मोटर $200\mathrm{V}$ के सप्लाई से $52\mathrm{A}$ धारा लेता है। शंट प्रतिरोध तथा आर्मेचर प्रतिरोध 100Ω व 0.1Ω हैं। पश्च emfका पता लगाएं। A dc shunt motor takes $52\mathrm{A}$ current from a supply of $200\mathrm{V}$. The shunt resistance and armature resistance are 100Ω and 0.1Ω . Find the back emf
a) 195 V
b) 194.8V
c) 195.2 V
d) 200V

42. सोपानी मोटर का तरंग उत्तेजन में परिणमित होता है।
Wave excitation of a stepper motor results in
a) अर्ध सोपानी/Half stepping
b) सूक्ष्म सोपानी/Microstepping
c) द्वि स्टेप कोण/Double step angle
d) बहु स्टेप कोण/Multiple step angle
43. एक प्रत्यावर्तित्र में उसके का पता लगाने के लिए पोटियर विधि प्रयुक्त की जाती है। Potiermethod of an alternator is used to finds its
a) दक्षता/Efficieny
b) क्षेत्र उत्तेजन/Field excitation
c) तुल्यकालिक गति/Synchronous speed
d) वोल्टता विनिमयन/Voltage regulation
44. डीसी शंट मोटर में वित्वरण (रिटार्डेशन) परीक्षण कमी का पता लगाने के लिए प्रयुक्त किया जाता है। Retardation test on a d.c. shunt motor is used for findinglosses a) तांबा/copper
b) लोह/Iron
c) घर्षण/Friction
d) t文 /Stray
45. एक डी सी शंट मोटर के आर्मेचर के साथ श्रेणी में प्रतिरोध करेगा। A resistance in series with the armature of a dc shunt motor will
a) गति को कम करेगा/Reduce the speed
b) गति को बढ़ाएगा/Increase the speed
c) सप्लाई वोल्टता के आधार पर गति को कम करेगा/बढ़ाएगा
Reduce/increase the speed depending on supply voltage
d) समान गति कायम रखेगा/Maintain the same speed

46.	एक आदर्श ट्रांस्फॉर्मर में है। An ideal transformer has
	a) समान प्राथमिक व द्वितीयक कुंडलन संख्या/Same number of primary and secondary winding
	b) कोई हानि व क्षरण प्रतिरोध नहीं/No losses and leakage reactance
	c) निर्गत शक्ति, निवेश शक्ति से कम है/Output power less than input power
	d) इसमें से कोई नहीं/None of these
47.	100 टर्न से युक्त ट्रांसफॉर्मर कुंडलन में $222~V$, $50~Hz$ की सप्लाई का प्रयोग किया जाता है। उत्पन्न अधिकतम फ्लक्स घनत्व $1~Wb/m^2$ है। कोर का अनुप्रस्थ काट क्षेत्र है। $222~V$, $50~Hz$ supply is applied to a transformer winding having $100~turns$. The maximum flux density produced is $1~Wb/m^2$. The cross sectional area of the core is
	a) 1 m^2
	b) 0.1 m ²
	c) 0.01 m ²
	d) 0.001 m^2
48.	एक 230 V, 50 Hz सप्लाई द्वितीयक ओपन स्थिति में ट्रांसफॉर्मर के साथ जुड़ी हुई है। यदि ट्रांसफॉर्मर 0.5A लेता है तथा 69 Wअवशोषित करता है, तो लोह ह्रास धारा है। A 230 V, 50 Hz supply is connected to a transformer with secondary open condition. If the transformer takes 0.5A and absorbs 69 W, the iron loss current is
	a) 0.5 A
	b) 0.2 A
	c) 0.3 A
	d) 0A
49.	जब मुख्य ट्रांसफॉर्मर रेटिंग 100 KVA है, तोट्रांसफॉर्मर के स्कॉट संबंधन में टीसर ट्रांसफॉर्मर रेटिंग कितनी है? What is the teaser transformer rating in a scott connection of transformers when the main transformer rating is 100 KVA
	a) 100 KVA
	b) 86.6 KVA
	c) 71.7 KVA
	d) 50 KVA

50. एक तीन फेज़, 60 Hz, 6पोल प्रेरण मोटर 1140 rpmपर घूमती है। मोटर की तकरीबन दक्षता है। A three phase, 60 Hz, 6 pole induction motor rotate at 1140 rpm. The approximate efficience
of the motor is
a) 99%
b) 95%
c) 90%
d) 85%
51. एक संधारित्र में स्टार्ट कैपेसिटर रन एकल फेज़ मोटर में, प्रारंभनके बाद, कौन-सा कुंडलन वियुक्त है? In a capacitor start - capacitor run single phase induction motor, which winding is isolate after starting.
a)मुख्य/Main
b)प्रारंभन/Starting
c)मुख्य या फिर प्रारंभन/Either main or starting
d)न मुख्यन प्रारंभन/Neither main nor starting
52. 22 MVA, 11 KV प्रत्यावर्तित्र की नामीय प्रतिबाधा है।
The nominal impedance of a 22 MVA, 11 KV alternator is
The nominal impedance of a 22 MVA, 11 KV alternator is a) $0.5~\Omega$
•
a) 0.5 Ω
a) 0.5Ω b) 2Ω
a) 0.5Ω b) 2Ω c) 2.2Ω
 a) 0.5 Ω b) 2 Ω c) 2.2 Ω d) 5.5 Ω 53. एक आठ पोल, 3फेज़ प्रत्यावर्तित्र में 72 स्लॉट हैं तथा कुंडलन पिच में 8स्लॉट हैं। उस विद्युत कोण का पर लगाएं, जिससे कुंडलन कॉर्ड किया जाता है। An eight pole, 3 phase alternator has 72 slots and winding pitch is 8 slots. Find the electrical
a) 0.5Ω b) 2Ω c) 2.2Ω d) 5.5Ω 53. एक आठ पोल, उफेज़ प्रत्यावर्तित्र में 72 स्लॉट हैं तथा कुंडलन पिच में 8स्लॉट हैं। उस विद्युत कोण का पर लगाएं, जिससे कुंडलन कॉर्ड किया जाता है। An eight pole, 3 phase alternator has 72 slots and winding pitch is 8 slots. Find the electrical angle by which the winding is chorded
a) 0.5Ω b) 2Ω c) 2.2Ω d) 5.5Ω 53. एक आठ पोल, 3फेज़ प्रत्यावर्तित्र में 72 स्लॉट हैं तथा कुंडलन पिच में 8स्लॉट हैं। उस विद्युत कोण का पर लगाएं, जिससे कुंडलन कॉर्ड किया जाता है। An eight pole, 3 phase alternator has 72 slots and winding pitch is 8 slots. Find the electrical angle by which the winding is chorded a) 10°
a) 0.5Ω b) 2Ω c) 2.2Ω d) 5.5Ω 53. एक आठ पोल, उफेज़ प्रत्यावर्तित्र में 72 स्लॉट हैं तथा कुंडलन पिच में 8स्लॉट हैं। उस विद्युत कोण का पत लगाएं, जिससे कुंडलन कॉर्ड किया जाता है। An eight pole, 3 phase alternator has 72 slots and winding pitch is 8 slots. Find the electrical angle by which the winding is chorded a) 10° b) 20°

54. 1	l kWh कलोरी के बराबर है।
]	l kWh is equal to Calories
;	a) 8.6×10^5
1	b) 7.46×10^5
(c) 4.18×10^5
(d) 3.6×10^5
	एक हाइड्रोइलेक्ट्रिक पावर स्टेशन की अधिकतम मांग 1250 kW तथा भार गुणक 80% है। एक वर्ष मेंkWh मेंउत्पादित कुल ऊर्जा है।
	A hydroelectric power station has a maximum demand of 1250 kW and a load factor of 80%. Total energy generated in an year in kWh is
;	a) 876x10 ⁴
1	b) 1000×10^4
(c) 1250×10^4
(d) 418×10^4
ā	एक तापीय पावर संयंत्र की अधिकतम मांग 200 MWहै। यदि लोड गुणक 60% तथा वार्षिक संयंत्र क्षमता गुणक40%है, तो प्रचालन रिजर्व क्षमता कितनी है? A thermal power plant has a maximum demand of 200 MW. What is the operating reserve capacity, if the load factor is 60% and annual plant capacity factor is 40%
i	a) 80MW
1	b) 100 MW
(c) 120 MW
(d) 300 MW
57.1	«VAR =
;	a) kW cosф
1	b) kW sinφ
(c) kW coto
(d) इसमें से कोई नहीं/None of these

58.	जब संचरण वोल्टता n गुणा बढ़ती है तब चालक आकार मेंहै। When the transmission voltage is increased by n times, the conductor size
	a) 1/n गुणा घटता है/Reduces by 1/n times
	b) n गुणा वृद्धि/Increases by n times
	c) 1/√n गुणा घटता है/Reduces by 1/√n times
	d) इनमें से कोई नहीं/None of these
59.	दो वायर डीसी फीडर में प्रत्येक वायर में वोल्टता पात 2%है। फीडर की संचरण दक्षता है। The voltage drop per wire in a dc two wire feeder is 2%. The transmission efficiency of the feeder is
	a) 99%
	b) 98%
	c) 96%
	d) इसमें से कोई नहीं/None of these
60.	ओवरहेड लाइन्स में सैग के संबंध में निम्नलिखित में से कौन-सी उक्ति सही नहीं है? Which of the following is not correct for sag in overhead lines
	a) चालक की प्रति इकाई लंबाई भार के आनुपातिक
	Proportional to weight per unit length of conductor
	b) चालक में तनाव के आनुपातिक/Proportional to tension in the conductor
	c) स्पैन लंबाई के वर्ग के आनुपातिक/Proportional to square of span length
	d) इसमें से कोई नहीं/None of these
61.	यदि $50~\rm{km}$ के लिए विद्युत रोधन प्रतिरोध $10~\rm{M}\Omega$ है, तो $100~\rm{km}$ केबल के लिए विद्युत रोधन प्रतिरोध कितना है? What is the insulation resistance of $100~\rm{km}$ cable, if the insulation resistance is $10~\rm{M}\Omega$ for $50~\rm{km}$?
	a) $5 M\Omega$
	b) $10 \text{ M}\Omega$
	c) $20 \text{ M}\Omega$
	d) $2.5~\mathrm{M}\Omega$

62.	न्यूनतम स्थाई दशा त्रुटि प्राप्त करने के लिए निम्नलिखित में से किस प्रतिकारी योजना का उपयोग किया जाता है? Which of the following compensation scheme is used to achieve minimum steady state error?
	a) समानुपातिक/Proportional
	b) समानुपातिक-अवकलज/Proportional-derivative
	c) समानुपातिक पूर्णांकीय/Proportional Integral
	d) ਕੀਤ/Lead
63.	एक HRC फ्यूज़ के फ्यूज़ अंतक से अंतिम धारा के शून्य होने में लिए गए समय को कहते हैं। The time taken for final current to become zero from the fuse cut off of a HRC fuse is known as a)पूर्व आर्कन समय/Pre-arcing time
	b)कुल प्रचालन समय/Total operating time
	c)अंतक समय/cut-off time
	d)आर्कन समय/arcing time
64.	ट्रांसफॉर्मर में प्रयुक्त बुक्कोल्स रिले द्वारा प्रचालित है। Buchholz relay used in transformer is operated by
	a)तापमान/Temperture
	b)गैस दाब/Gas pressure
	c) स्थिर वैद्युत प्रेरण/Electrostatic induction
	d) विद्युत चुंबकीय प्रेरण/Electromagnetic induction
65.	1ऐम्पियर टर्न/मीटर =ओरेस्टेड 1 Ampere turn/metre = Oersted a) $4\pi \times 10^{-2}$ b) $4\pi \times 10^{-3}$ c) $4\pi \times 10^{-4}$ d) $4\pi \times 9.81 \times 10^{-3}$

66. आमने-सामने रखे हुएदो अचालक प्लेटों के बीच के विद्युत फील्ड का पता लगाएं, यदि इन दोनों में ठआवेश घनत्व के साथ +ve आवेश हैं।

Find the electric field between two non conducting plates placed facing each other, if both of them contains +ve charges having charge density σ .

- a) $\frac{\sigma}{\epsilon_0}$
- b) $\frac{\sigma}{2\epsilon_0}$
- c) $\frac{2\sigma}{\epsilon_0}$
- d) इसमें से कोई नहीं/None of these
- 67. तापीय पावर संयंत्र के लिए किस प्रकार का कोयला सबसे उचित है? Which type of coal is best suited for thermal power plant?
 - a) पीट/Peat
 - b) लिग्नाइट/Lignite
 - c) बिट्मिनस/Bituminous
 - d) एंथ्रासाइट/Anthracite
- 68. कौन-सा टर्बाइन, उच्च विसर्जन निम्न शीर्ष हाइड्रो पावर संयंत्र के लिए सबसे उचित है? Which turbine is most suited in high discharge low head hydro power plant
 - a)कैप्लन टर्बाइन/Kaplan Turbine
 - b)फ्रांसिस टर्बाइन/Francis Tubine
 - c)पेल्टन व्हील टर्बाइन/Pelton wheel turbine
 - d)टर्गो व्हील टर्बाइन/Turgo wheel turbine
- 69. त्रि फेज़ प्रेरण मोटर के स्लिप को जात करने के लिए किस विधि का उपयोग किया जाता है? Which are the methods used to find the slip of a three phase induction motor
 - 1. टैकोमीटर विधि/Tachometer method
 - 2. चुंबकीय नीडल विधि/Magnetic needle method
 - 3. स्ट्रोबोस्कोपिक विधि/Stroboscopic method
 - a) 1 & 2
 - b) 1 & 3
 - c) 2 & 3
 - d) 1 & 2 & 3

70. विद्युत	रासायनिक	समतुल्य(z) तथा	रासायनिक	समतुल्य(E)के	बीच	में	निम्नलिखित	में	से	कौन-सा	संबंध
सही है?	•										

Which of the following relation is correct between electrochemical equivalent (z) and chemical equivalent (E).

- a) $\frac{E}{z}$, सभी तत्वों के लिए स्थिरांक है/ $\frac{E}{z}$ is constant for all elements
- b) $\frac{E}{z}$, सभी तत्वों के लिए अलग है/ $\frac{E}{z}$ is different for all elements
- c) $\frac{E^2}{Z}$, सभी तत्वों के लिए स्थिरांक है/ $\frac{E^2}{Z}$ is constant for all elements
- d) $\frac{E}{z^2}$, सभी तत्वों के लिए स्थिरांक है/ $\frac{E}{z^2}$ is constant for all elements

71. आवेश Q, हाइड्रोजन के Pग्राम अणुओं को मुक्त करता है। समान आवेश द्वारा मुक्त किए ऑक्सीजन के ग्राम अणु की संख्या है।

A charge Q liberated P moles of hydrogen. The number of moles of oxygen liberated by the same charge is

- a) P
- b) P/2
- c) 2P
- d)उपर्युक्त में से कोई नहीं/None of these
- 72. "q" कूलंब का आवेश"f"घूर्णन प्रति सेकंड की आवृत्ति में"r"मीटर त्रिज्या के वृत्त में घूम रहा है। समतुल्य धारा है।

A charge of "q" coulomb is moving in a circle of radius "r" metre at a frequency of "f" revolutions per second. The equivalent current is

- a) qf
- b) q/f
- c) qr/f
- d) q/fr

73. सिलिकन ट्रांजिस्टर के लिए यदि $\beta = 60$ है, तो संग्राही से उत्सर्जक वोल्टताका मान है। For the silicon transistor if $\beta = 60$, the value of collector to emitter voltage is

- a) 0.2V
- b) 1.2V
- c) 6 V
- d) 3.8V
- 74. जेनर के लिए विरोधी वोल्टता6Vतथा अग्र वोल्टता1.2 Vहै। opampलिब्ध अनंतमानें। यदि इनपुट,1V शीर्ष आयाम तथा 1KHz की आवृत्ति का साइन तरंग है, तो Voका पता लगाएं।

For the Zener, reverse voltage is 6V and forward voltage is 1.2 V. Assume infinite opamp gain. If the input is a sine wave of 1V peak amplitude and a frequency of 1KHz, find Vo

- a) 1.2V शीर्ष आयाम का साइन तरंग/Sine wave of 1.2V peak amplitude
- b) 6V शीर्ष आयाम का साइन तरंग / Sine wave of 6V peak amplitude
- c) +/-7.2V तक क्लिप किया साइन तरंग / Sine wave clipped at +/-7.2V
- d) +/-7.2Vका वर्ग तरंग /Square wave of +/-7.2V

- 75. K मैप का उपयोग कर कम करें। $\sum (0,4,5,6,9,12,13,14) = ?$ Reduce using K map. $\sum (0,4,5,6,9,12,13,14) = ?$
 - a) $B \bar{C} + \bar{B}D + A\bar{C}D + \bar{A}\bar{C}\bar{D}$
 - b) $B \bar{C} + B \bar{D} + A \bar{C} D + \bar{A} \bar{C} \bar{D}$
 - c) $B \bar{C} + B\bar{D} + \bar{A} CD + \bar{A}\bar{C} D$
 - d) $B \bar{C} + B\bar{D} + ACD + \bar{A}\bar{C}D$
- 76. एक इंटल 8085प्रोसेसर नीचे दिए प्रोग्राम को निष्पादित करता है। निष्पादित लूपों की संख्या है। An intel 8085 processor is executing the program given below. The number of times the loop executed is

MVI A,20 H MVI B,10 H LOOP: ADD B RLC JNC LOOP HLT

- a) 2 बार/times
- b) 3बार/times
- c) 4 बार/times
- d) 5 बार/times

77. निम्निलिखित परिपथ में फ्लिप-फ्लॉप को पहले क्लियर किया गया तथा बाद में 6स्पंद के लिए क्लॉक किया गया। Q में अनुक्रम (सबसे हाल के मान को अल्पतम सार्थक द्वयंक मानते हुए) होगा।
In the following circuit the flip flop was initially cleared and then clocked for 6 pulses. The sequence at Q (assuming most recent value to be least significant bit) will be

- a) 010101
- b) 101010
- c) 001001
- d) 100100
- 78. एक क्रमागत सन्निकटन एडीसी 4MHz कालद तथा 8बिट द्विआधारी सीढ़ी (लैडर) का उपयोग करता है। रूपांतरण काल कितना है?

A successive approximation ADC uses a 4MHz clock and an 8 bit binary ladder. What is the conversion time?

- a) 1µsec
- b) 2 µsec
- c) 4 µsec
- d) 8 µsec

79. Vo=0Vरखने के लिए नीचे दिए चित्र से R के मान का पता लगाएं। Find the value of R in figure below to keep Vo=0V

- a) 7.273K
- b) 2K
- c) 5.375 K
- d) 6.667K
- 80. निम्नलिखित तार्किक परिपथ में से कौन-सा XOR gateके समतुल्य नहीं है? Which of the following logical circuit is not equivalent to an XOR gate?

