

#### Module 3

# **Nuclear Reactions**

**REMYAKP** 



## **Overview**

- Basics
- Structure and stability
- Magic numbers
- Detailed study of different nuclear models
  - nuclear shell model



# **Nuclear chemistry**

- Nucleons collective term for protons and neutrons
- Nuclide- a single type of nucleus
- Notation



Z is the atomic number (protons)
A is the mass number (protons + neutrons)

Isotopes- Atoms with the same Z but different A.
 Eg: <sup>12</sup>C, <sup>13</sup>C, and <sup>14</sup>C

**ENTRI** 

- <sup>1</sup>H, <sup>2</sup>H, and <sup>3</sup>H
  - Deuteron a simple two nucleon system (1p+1n)
- Isotones same neutron number but different proton number
- <sup>36</sup><sub>16</sub>S, <sup>37</sup><sub>17</sub>Cl, <sup>38</sup><sub>18</sub>Ar, <sup>39</sup><sub>19</sub>K and <sup>40</sup><sub>20</sub>Ca- isotones of
  - <sup>9</sup><sub>4</sub>Be, <sup>10</sup><sub>5</sub>B- isotones of 5
- Isobars- same number of nucleons (p+n)
  - <sup>24</sup> Na, <sup>24</sup> Mg- 24 nucleons
- With a radius of about 10<sup>-15</sup> m, a nucleus is quite small.



 Nuclear Size - It was possible to measure the size of the nucleus through Rutherford's experiment.

$$r = R_0 A^{1/3}$$

r- radius, A-mass number, R<sub>0</sub>- const.(1.5x10<sup>-15</sup> m)

Eg: Radius of <sup>206</sup>Pb nucleus ? - 8.85 fm

Nuclear density -

Density:  $\rho=m/V$ , Volume:  $V=4/3 \pi r^3$ . If we know mass number, we can find mass by multiplying by a.m.u. Nuclear density remains constant throughout the entire volume of the nucleus.



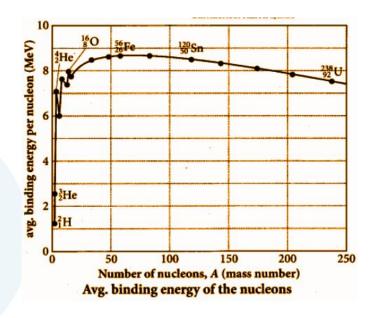
- 1 a.m.u= 1.66x10<sup>-27</sup> kg
- Energy equivalence of a.m.u.:1 a.m.u = 931.5 MeV
- Nuclear force Force that acts between protons and neutrons
- 1. Attractive force between nucleons- p-p,p-n and n-n.
- 2. Nuclear force operates within 0.10 fermi (10<sup>-16</sup>m)
- 3. Referred to as short range forces.

- 1. Yukawa suggested, that pi mesons oscillate between neighbouring nucleons with a velocity close to light.
- 2. Exchange of pi mesons between neighbouring nucleons results in attraction.
- 3. If the attractive force between nucleons < electrostatic repulsion then nucleus become unstable and results in decay.



## **Nuclear Binding Energy (B.E)**

- The minimum energy required to disassemble the nucleus of an atom into its constituent nucleons (p,n). B.E for stable nuclei is always +ve. Expressed in terms of kJ/mole or MeV's/nucleon.
- Mass defect: The total mass of the bound particles is less than the sum of the masses of the separate particles by an amount equivalent to the B.E.  $\Delta E = \Delta mc^2$


$$\Delta$$
m = mass defect ( $Zm_p$ + (A-Z)  $m_n$  - $m_{nuc}$ )  
  $\Delta$ E = change in energy



The B.E/nucleon averages about 8 MeV, but is lower for both the lightest and heaviest nuclei.

With increase in A, B.E increases reaches a max at 50-60, Then BE/nucleon decrease

This continues up to  $A \approx$  56, roughly corresponding to the mass number of iron.



He, Be, C, O,Ne- have same A, multiples of 4 and they contain of equal no. of p and n.



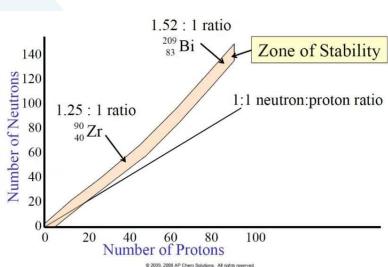
 Nucleons with high binding energy are more stable.

## **Nuclear Stability**

#### n/p ratio

- 1. Atomic number less than 20, mostly have proton and ratio 1:1.
- 2. Low atomic 1:1, High atomic 1.5:1
- 3. The number of neutrons increases as the atomic number increases.
- 4. The first 80 elements of the periodic table have stable isotopes.
- 5. Elements with Z> 82 are unstable and radioactive.

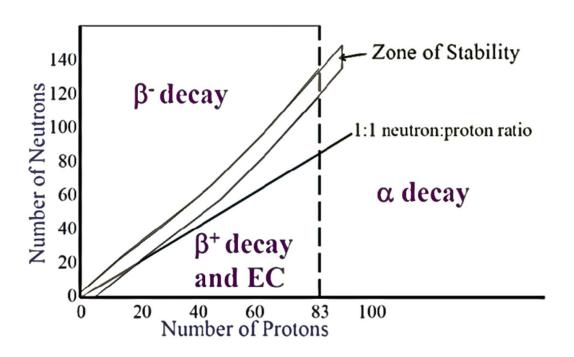



## **Reasons for instability**

- 1. Too many protons
- 2. Too many neutrons
- 3. Too many of both protons and neutron (large

nucleus)

**Band of Stability** 


End of the curve is Pb-206



© 2009, 2008 AP Chem Solutions. All rights reserve



## **Configurations for Stability**





### Number of neutrons and protons

 Number of stable nucleus related to Number of p and n

| р    | n    | stable nuclides | examples                                                     |
|------|------|-----------------|--------------------------------------------------------------|
| Even | Even | 168             | <sup>12</sup> <sub>6</sub> C, <sup>16</sup> <sub>8</sub> O   |
| Even | Odd  | 57              | <sup>13</sup> <sub>6</sub> C, <sup>47</sup> <sub>22</sub> Ti |
| Odd  | Even | 50              | <sup>19</sup> <sub>9</sub> F, <sup>23</sup> <sub>11</sub> Na |
| Odd  | Odd  | 4               | <sup>2</sup> <sub>1</sub> H, <sup>6</sup> <sub>3</sub> Li    |



### Magic numbers

• Certain combinations confer especially stable nucleus 2,8,20,28,50,82,126.

Eg: He, O, Ca, Ni, Sn, Pb

 The features of which is explained by nuclear shell model



## **Model of Nucleus**

#### 1. Nuclear shell model:

- A theoretical model to describe atomic nucleus in term of energy levels.
- This model is based on the "Pauli exclusion principle".
- Shell model is similar to bohr atom model
- Shell model describes how much energy is required to move nucleons
- Nucleons are arranged in the shells having discrete energy levels satisfying certain quantum mechanical conditions.

- p and n are are packed in separate shells nuclear shells.
- The nuclei shell are associated with "magic numbers."
- 7 numbers -2,8,20,28,50,82,126
- Some nuclei contain magic number of both protons and neutrons such as
  - Eg: He (p=2, n=2), oxygen (p=8, n=8)
- These are called doubly magic numbers
   -Exceptionally high stability.



#### **Features**

- If neutron/proton corresponds to magic number
   we need greater energy to remove last neutron.
- If number of neutrons corresponds to Magic number - stable isotones and more in number (isotones-82 <sup>138</sup>Ba, <sup>139</sup>La, <sup>140</sup>Ce, <sup>141</sup>Pr, <sup>142</sup>Nd, <sup>144</sup>Sm)
- If number of protons corresponds to Magic number - stable isotopes and more in number (Ca -6 isotopes)
- If both p and n corresponds to magic numberthen it's the most stable nuclei. (He-4, Pb-208)



- High natural abundance of nuclei with proton or/and neutron number equal to magic numbers.
- Other isotones show high stability n= 50, 20 (<sup>90</sup>Zr, <sup>92</sup>Mo, <sup>38</sup>Ar, <sup>40</sup>Ca)
- Electric quadrupole moment of magic numbered nuclei is zero indicating the spherical symmetry of nucleus for closed shells.



# **THANK YOU**